|
广西师范大学学报(自然科学版) ›› 2022, Vol. 40 ›› Issue (1): 82-90.doi: 10.16088/j.issn.1001-6600.2021060907
孙烨, 蒋京京, 王纯杰*
SUN Ye, JIANG Jingjing, WANG Chunjie*
摘要: 广义极值分布自提出以来就受到众多学者关注,它可以用于拟合某些寿命数据,在医学、工程和气象等领域应用很广泛。本文主要在区间删失I型数据,即现状数据下研究三参数广义极值模型的贝叶斯回归分析。基于广义极值分布的位置参数引入协变量,建立位置参数与生存时间的贝叶斯回归模型,并采用Gibbs抽样和MH算法相结合的MCMC方法,从各个参数的后验分布中进行抽样,得到参数的估计值。利用R软件进行数值模拟,比较极大似然估计和贝叶斯估计在有限样本下的效果,结果表明参数生存回归模型拟合效果好,模拟结果显示贝叶斯估计优于极大似然估计。将该方法用于144只雄性RFM小鼠的肺肿瘤数据分析,得到一些分析结果。
中图分类号:
[1] 彭非, 王伟. 生存分析[M]. 北京:中国人民大学出版社, 2004: 62-64. [2]史道济. 实用极值统计方法[M]. 天津:天津科学技术出版社, 2006: 8-13. [3]李群, 董小刚, 王纯杰, 等. 广义指数分布下区间删失数据贝叶斯回归分析[J]. 长春工业大学学报(自然科学版), 2016, 37(6): 597-602. [4]PRESCOTT P, WALDEN A T. Maximum likelihood estimation of the parameters of the generalized extreme-value distribution[J]. Biometrika, 1980, 67(3): 723-724. [5]PRESCOTT P, WALDEN A T. Maximum likeiihood estimation of the parameters of the three-parameter generalized extreme-value distribution from censored samples[J]. Journal of Statistical Computation and Simulation, 1983, 16(3/4): 241-250. [6]李秀敏, 蔡霞. 广义极值分布参数的Bayes估计[C]//中国灾害防御协会风险分析专委会第3届年会论文集. 广州: 中国灾害防御协会, 2008:29-34. [7]MARKOSE S, ALENTORN A. Thegeneralized extreme value distribution, implied tail Index, and option pricing[J]. The Journal of Derivatives, 2011, 18(3): 35-60. [8]鲁帆, 严登华. 基于广义极值分布和Metropolis-Hastings抽样算法的贝叶斯MCMC洪水频率分析方法[J]. 水利学报, 2013, 44(8): 942-949. [9]樊利利, 王艳永. 广义极值分布的参数估计及实例分析[J]. 首都师范大学学报(自然科学版), 2017, 38(3): 13-18. [10]吴云标, 迟艺侠. 基于贝叶斯MCMC方法的洪水频率分析及不确定性评估[J]. 安徽工业大学学报(自然科学版), 2018, 35(1): 66-72. [11]NASEEF T M, KUMAR V S, JOSEPH J, et al. Uncertainties of the 50-year wave height estimation using generalized extreme value and generalized Pareto distributions in the Indian Shelf seas[J]. Natural Hazards, 2019, 97(3): 1231-1251. [12]AGUIRRE-SALADO A I, AGUIRRE-SALA C A, ALVARADO E, et al. On the smoothing of the generalized extreme value distribution parameters using penalized maximum likelihood: a case study on UVB radiation maxima in the mexico city metropolitan area[J]. Mathematics, 2020, 8(3): 329. [13]RYPKEMA D, TULJAPURKAR S. Chapter 2-Modeling extreme climatic events using the generalized extreme value (GEV) distribution[J]. Handbook of Statistics, 2021, 44(1): 39-71. [14]SAMPAIO J, COSTA V. Bayesian regional flood frequency analysis with GEV hierarchical models under spatial dependency structures[J]. Hydrological Sciences Journal,2021, 66(3):422-433. [15]YOON S, CHO W, HEO J H, et al. A full Bayesian approach to generalized maximum likelihood estimation of generalized extreme value distribution[J]. Stochastic Environmental Research and Risk Assessment, 2010, 24(5): 761-770. [16]HOEL D G, WALBURG H E Jr. Statistical analysis of survival experiments[J]. Journal of the National Cancer Institute, 1972, 49(2):361-372. [17]SUN J G. The statistical analysis of interval-censored failure time data[M]. New York: Springer, 2006. |
[1] | 陈钟秀, 张兴发, 熊强, 宋泽芳. 非对称DAR模型的估计与检验[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 68-81. |
[2] | 孔令涛, 宋祥军, 王晓敏. 可加风险模型现状数据样本量的确定[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 187-194. |
[3] | 梁鑫, 陈小玲, 张兴发, 李元. 一类带有GARCH类误差项的自回归滑动平均模型[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 195-205. |
[4] | 李莉丽, 张兴发, 李元, 邓春亮. 基于高频数据的日频GARCH模型估计[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 68-78. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |