广西师范大学学报(自然科学版) ›› 2022, Vol. 40 ›› Issue (1): 187-194.doi: 10.16088/j.issn.1001-6600.2021060915

• 研究论文 • 上一篇    下一篇

可加风险模型现状数据样本量的确定

孔令涛*, 宋祥军, 王晓敏   

  1. 山东财经大学 统计学院, 山东 济南 250014
  • 收稿日期:2021-06-09 修回日期:2021-08-10 出版日期:2022-01-25 发布日期:2022-01-24
  • 通讯作者: 孔令涛(1980—),男,山东滕州人,山东财经大学副教授, 博士。E-mail: kltgw80@163.com
  • 基金资助:
    国家自然科学基金(11801317); 山东省高等学校科技计划(J17KA163)

Sample Size Determination for the Additive Hazards Model with Current Status Data

KONG Lingtao*, SONG Xiangjun, WANG Xiaomin   

  1. School of Statistics, Shandong University of Finance and Economics, Jinan Shandong 250014, China
  • Received:2021-06-09 Revised:2021-08-10 Online:2022-01-25 Published:2022-01-24

摘要: 科学研究中,样本量和功效计算是非常重要的工作。可加风险模型是生存分析研究中经常用到的半参数模型,其协变量对基础风险函数有加法作用。和比例风险模型相比,可加风险模型在许多应用中效果更好,尤其是协变量取值为0或1时。本文基于Wald检验,提出一种计算可加风险模型现状数据功效和样本量的新方法。模拟结果说明该计算方法十分有效。另外,本文通过1个实际例子展示新方法的应用。

关键词: 可加风险模型, 功效, 现状数据, 样本量

Abstract: Power and sample size calculations are important and necessary parts in the design stage of a scientific study. In the failure time data analysis, the additive hazards model, which specifies that the covariates have an additive effect on the baseline risk, is one of the most popular used semiparametric models. Compared with the proportional hazards model, the additive hazards model would be more plausible in many applications, especially in the two-sample situation where the covariate takes value only 0 or 1. In this paper, a novel method is proposed for calculating power and sample size for the additive hazards model with current status data based on the Wald test. The simulation studies demonstrate that the proposed sample size formula is adequate. Moreover, a real example is presented to illustrate the application of the proposed formula.

Key words: additive hazards model, power, current status data, sample size

中图分类号: 

  • O212.6
[1] ROSSINI A J, TSIATIS A A. A semiparametric proportional odds regression model for the analysis of current status data[J]. Journal of the American Statistical Association, 1996, 91: 713-721.
[2]JEWELL N P, van der LAAN M. Generalizations of current status data with applications[J]. Lifetime Data Analysis, 1995, 1: 101-110.
[3]LIN D Y, OAKES D, YING Z. Additive hazards regression with current status data[J]. Biometrika, 1998, 85: 289-298.
[4]SUN J. The Statistical analysis of interval-censored failure time data[M]. New York: Springer, 2006.
[5]CHOW S C, SHAO J, WANG H S, et al. Sample size calculations in clinical research[M]. New York: Taylor & Francis, 2018.
[6]胡桂华, 范署姗, 吴婷. 基于设计效应的人口普查质量评估调查样本量测算[J]. 统计与信息论坛, 2020, 35(10): 12-21.
[7]褚红玲, 周云仙, 倪凯文, 等. 基于信息效能模型定性访谈的样本量确定[J]. 中国全科医学, 2021, 24(10): 1274-1276,1283.
[8]邢星, 吴莹, 陈平雁. 配对设计中缺乏差值标准差情况下的样本量估计策略[J]. 中国卫生统计, 2021, 38(2): 181-182,187.
[9]SCHOENFELD D A. Sample-size formula for the proportional-hazards regression model[J]. Biometrics, 1983, 39: 499-503.
[10]WANG S, ZHANG J, LU W. Sample size calculation for the proportional hazards model with a time-dependent covariate[J]. Computational Statistics and Data Analysis, 2014, 74: 217-227.
[11]WILLIAMSON J M, LIN H M, KIM H Y. Power and sample size calculations for current status data[J]. Statistics in Medicine, 2009, 28: 1999-2011.
[12]WEN C C, CHEN Y H. Sample size determination for semiparametric analysis of current status data[J]. Statistical Methods in Medical Research, 2019, 28(8): 2247-2257.
[13] ZENG D, LIN D Y. Efficient estimation of semiparametric transformation models for counting processes[J]. Biometrika, 2006, 93: 627-640.
[14]LIN D Y, YING Z. Semiparametric analysis of the additive risk model[J]. Biometrika, 1994, 81: 61-71.
[15]赵慧, 崔琪, 孙建国.可加风险模型下相依Ⅰ型区间删失数据的一个Copula推断方法[J].统计与决策, 2015, 16: 8-12.
[16]肖东莹, 郑少智.半参变系数可加风险模型的变量选择与估计[J].南宁师范大学学报(自然科学版), 2020, 37(2): 16-21.
[17]罗文婷, 韦程东, 林玉婷, 等.右删失数据中不同参数设置的样本量及删失率的cc值规律研究[J].南宁师范大学学报(自然科学版), 2020, 37(2): 16-21.
[18]SU P F. Power and sample size calculation for the additive hazard model[J]. Journal of Biopharmaceutical Statistics, 2017 27: 571-583.
[19]KALBFLEISCH J D, PRENTICE R L. The statistical analysis of failure time data[M]. New York: John Wiley & Sons, 2002.
[20]WALD A. Tests of statistical hypotheses concering several parameters when the number of observations is large[J]. Transactions of the American Mathematical Society, 1943, 54: 426-482.
[21]JUNG S H, KANG S J, MCCALL L M, et al. Sample size computation for two-sample noninferiority log-rank test[J]. Journal of Biopharmaceutical Statistics, 2005, 15: 969-979.
[22]HOEL D G, WALBURG H E. Statistical analysis of survival experiments[J]. Journal of the National Cancer Institute, 1972, 49: 361-372.
[23]DUNSON D B, DINSE G E. Bayesian incidence analysis of animal tumorigenicity data[J]. Journal of the Royal Statistical Society, Series C (Applied Statistics), 2001, 50: 125-141.
[24]GHOSH D. Efficiency considerations in the additive hazards model with current status data[J]. Statistica Neerlandica, 2001, 55: 367-376.
[25]KOSOROK M R. Introduction to empirical processes and semiparametric inference[M]. New York: Springer, 2008.
[1] 孙烨, 蒋京京, 王纯杰. 广义极值回归模型下现状数据的贝叶斯估计[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 82-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘国伦, 宋树祥, 岑明灿, 李桂琴, 谢丽娜. 带宽可调带阻滤波器的设计[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 1 -8 .
[2] 刘铭, 张双全, 何禹德. 基于改进SOM神经网络的异网电信用户细分研究[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 17 -24 .
[3] 胡郁葱, 陈栩, 罗嘉陵. 多起终点多车型混载的定制公交线路规划模型[J]. 广西师范大学学报(自然科学版), 2018, 36(4): 1 -11 .
[4] 唐堂, 魏承赟, 罗晓曙, 丘森辉. 基于附加惯性项人群搜索算法的四旋翼无人机姿态控制研究[J]. 广西师范大学学报(自然科学版), 2018, 36(4): 12 -19 .
[5] 林越, 刘廷章, 黄莉荣, 奚晓晔, 潘建. 基于双向KL距离聚类算法的变压器状态异常检测[J]. 广西师范大学学报(自然科学版), 2018, 36(4): 20 -26 .
[6] 韦振汉, 宋树祥, 夏海英. 基于随机森林的锂离子电池荷电状态估算[J]. 广西师范大学学报(自然科学版), 2018, 36(4): 27 -33 .
[7] 许远静, 胡维平. 基于随机森林的不同程度病态嗓音识别[J]. 广西师范大学学报(自然科学版), 2018, 36(4): 34 -41 .
[8] 张灿龙, 苏建才, 李志欣, 王智文. 基于AdaBoost置信图的红外与可见光目标跟踪[J]. 广西师范大学学报(自然科学版), 2018, 36(4): 42 -50 .
[9] 刘电霆, 吴丽娜. 社会网络中基于信任的LDA主题模型领域专家推荐[J]. 广西师范大学学报(自然科学版), 2018, 36(4): 51 -58 .
[10] 姜影星, 黄文念. 非线性薛定谔-麦克斯韦方程的基态解[J]. 广西师范大学学报(自然科学版), 2018, 36(4): 59 -66 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发