|
广西师范大学学报(自然科学版) ›› 2022, Vol. 40 ›› Issue (1): 187-194.doi: 10.16088/j.issn.1001-6600.2021060915
孔令涛*, 宋祥军, 王晓敏
KONG Lingtao*, SONG Xiangjun, WANG Xiaomin
摘要: 科学研究中,样本量和功效计算是非常重要的工作。可加风险模型是生存分析研究中经常用到的半参数模型,其协变量对基础风险函数有加法作用。和比例风险模型相比,可加风险模型在许多应用中效果更好,尤其是协变量取值为0或1时。本文基于Wald检验,提出一种计算可加风险模型现状数据功效和样本量的新方法。模拟结果说明该计算方法十分有效。另外,本文通过1个实际例子展示新方法的应用。
中图分类号:
[1] ROSSINI A J, TSIATIS A A. A semiparametric proportional odds regression model for the analysis of current status data[J]. Journal of the American Statistical Association, 1996, 91: 713-721. [2]JEWELL N P, van der LAAN M. Generalizations of current status data with applications[J]. Lifetime Data Analysis, 1995, 1: 101-110. [3]LIN D Y, OAKES D, YING Z. Additive hazards regression with current status data[J]. Biometrika, 1998, 85: 289-298. [4]SUN J. The Statistical analysis of interval-censored failure time data[M]. New York: Springer, 2006. [5]CHOW S C, SHAO J, WANG H S, et al. Sample size calculations in clinical research[M]. New York: Taylor & Francis, 2018. [6]胡桂华, 范署姗, 吴婷. 基于设计效应的人口普查质量评估调查样本量测算[J]. 统计与信息论坛, 2020, 35(10): 12-21. [7]褚红玲, 周云仙, 倪凯文, 等. 基于信息效能模型定性访谈的样本量确定[J]. 中国全科医学, 2021, 24(10): 1274-1276,1283. [8]邢星, 吴莹, 陈平雁. 配对设计中缺乏差值标准差情况下的样本量估计策略[J]. 中国卫生统计, 2021, 38(2): 181-182,187. [9]SCHOENFELD D A. Sample-size formula for the proportional-hazards regression model[J]. Biometrics, 1983, 39: 499-503. [10]WANG S, ZHANG J, LU W. Sample size calculation for the proportional hazards model with a time-dependent covariate[J]. Computational Statistics and Data Analysis, 2014, 74: 217-227. [11]WILLIAMSON J M, LIN H M, KIM H Y. Power and sample size calculations for current status data[J]. Statistics in Medicine, 2009, 28: 1999-2011. [12]WEN C C, CHEN Y H. Sample size determination for semiparametric analysis of current status data[J]. Statistical Methods in Medical Research, 2019, 28(8): 2247-2257. [13] ZENG D, LIN D Y. Efficient estimation of semiparametric transformation models for counting processes[J]. Biometrika, 2006, 93: 627-640. [14]LIN D Y, YING Z. Semiparametric analysis of the additive risk model[J]. Biometrika, 1994, 81: 61-71. [15]赵慧, 崔琪, 孙建国.可加风险模型下相依Ⅰ型区间删失数据的一个Copula推断方法[J].统计与决策, 2015, 16: 8-12. [16]肖东莹, 郑少智.半参变系数可加风险模型的变量选择与估计[J].南宁师范大学学报(自然科学版), 2020, 37(2): 16-21. [17]罗文婷, 韦程东, 林玉婷, 等.右删失数据中不同参数设置的样本量及删失率的cc值规律研究[J].南宁师范大学学报(自然科学版), 2020, 37(2): 16-21. [18]SU P F. Power and sample size calculation for the additive hazard model[J]. Journal of Biopharmaceutical Statistics, 2017 27: 571-583. [19]KALBFLEISCH J D, PRENTICE R L. The statistical analysis of failure time data[M]. New York: John Wiley & Sons, 2002. [20]WALD A. Tests of statistical hypotheses concering several parameters when the number of observations is large[J]. Transactions of the American Mathematical Society, 1943, 54: 426-482. [21]JUNG S H, KANG S J, MCCALL L M, et al. Sample size computation for two-sample noninferiority log-rank test[J]. Journal of Biopharmaceutical Statistics, 2005, 15: 969-979. [22]HOEL D G, WALBURG H E. Statistical analysis of survival experiments[J]. Journal of the National Cancer Institute, 1972, 49: 361-372. [23]DUNSON D B, DINSE G E. Bayesian incidence analysis of animal tumorigenicity data[J]. Journal of the Royal Statistical Society, Series C (Applied Statistics), 2001, 50: 125-141. [24]GHOSH D. Efficiency considerations in the additive hazards model with current status data[J]. Statistica Neerlandica, 2001, 55: 367-376. [25]KOSOROK M R. Introduction to empirical processes and semiparametric inference[M]. New York: Springer, 2008. |
[1] | 孙烨, 蒋京京, 王纯杰. 广义极值回归模型下现状数据的贝叶斯估计[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 82-90. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |