|
广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (2): 120-130.doi: 10.16088/j.issn.1001-6600.2023041902
龙芳, 蔡静*, 朱艳
LONG Fang, CAI Jing*, ZHU Yan
摘要: 基于逐步Ⅱ型混合截尾样本,研究Lomax分布多部件应力强度模型的可靠性分析问题。假设应力和强度具有不同形状参数和共同尺度参数,利用极大似然理论及迭代方法获得可靠度函数的极大似然估计(MLE),并给出渐近置信区间;然后,运用贝叶斯理论,借助Tierney-Kadane(TK)近似方法、MCMC算法,讨论平方误差损失函数下未知参数及可靠度的贝叶斯估计,给出其最大后验密度可信区间(HPD);最后,利用Monte-Carlo模拟方法对估计结果进行对比分析。模拟结果显示:贝叶斯估计整体上优于极大似然估计,并且随样本量的增大,2种估计的均方误差(MSE)均逐渐减小,HPD可信区间的效果优于渐近置信区间。
中图分类号: O213.2
[1] 马秀平. 基于逆Xgamma分布的应力强度模型可靠度估计[D]. 安庆:安庆师范大学, 2022. [2] 戴林送, 王枞. 基于广义逆威布尔分布的应力强度模型可靠度估计[J]. 统计与决策, 2020, 36(9): 25-29. [3] 李珺, 闫在在. 逐次Ⅰ型混合截尾下基于FGM copula的应力强度模型可靠性估计[J]. 数学的实践与认识, 2022, 52(4): 183-195. [4] 程从华. 基于截尾数据指数Pareto分布应力-强度模型的可靠性[J]. 数学学报(中文版), 2020, 63(3): 193-208. [5] BHATTACHARYYA G K,JOHNSON R A. Estimation of the reliability in a multicomponent stress-strength model[J]. Journal of the American Statistical Association,1974,69(348):966-97. [6] AKGÜL F G. Classical and Bayesian estimation of multicomponent stress-strength reliability for exponentiated Pareto distribution[J]. Soft Computing, 2021, 25(14): 9185-9197. [7] FATIH K. Classical and Bayesian estimation of reliability in a multicomponent stress-strength model based on a general class of inverse exponentiated distributions[J]. Statistical Papers, 2018, 59(3): 1161-1192. [8] JANA N, BERA S. Interval estimation of multicomponent stress strength reliability based on inverse Weibull distribution[J]. Mathematics and Computers in Simulation, 2022, 191: 95-119. [9] WANG L, WU K, TRIPATHI Y M, et al. Reliability analysis of multicomponent stress-strength reliability from a bathtub-shaped distribution[J]. Journal of Applied Statistics, 2020, 49(1): 122-142. [10] DEY S, MAZUCHELI J, ANIS M Z. Estimation of reliability of multicomponent stress-strength for a Kumaraswamy distribution[J]. Communications in Statistics Theory and Methods, 2017, 46(4): 1560-1572. [11] AKGÜL F G. Reliability estimation in multicomponent stress-strength model for Topp-Leone distribution[J]. Journal of Statistical Computation and Simulation, 2019, 89(15): 2914-2929. [12] RAO G S, BHATTI F A, ASLAM M, et al. Estimation of reliability in a multicomponent stress-strength system for the exponentiated moment-based exponential distribution[J]. Algorithms, 2019, 12(12), 246. [13] NADAR M, ERÇELIK E. Reliability of multicomponent stress-strength model based on bivariate generalized exponential distribution[J]. American Journal of Mathematical and Management Sciences, 2023, 42(1): 86-103. [14] SADEGH M K. Erratum to: Reliability of a coherent system in a multicomponent stress-strength model[J]. American Journal of Mathematical and Management Sciences, 2021, 40(4): 336-339. [15] RASEKHI M, SABER M M, YOUSOF H M. Bayesian and classical inference of reliability in multicomponent stress-strength under the generalized logistic model[J]. Communications in Statistics-Theory and Methods, 2021, 50(21): 5114-5125. [16] MAURYA R K, TRIPATHI Y M. Reliability estimation in a multicomponent stress-strength model for Burr XII distribution under progressive censoring[J]. Brazilian Journal of Probability and Statistics, 2020, 34(2): 345-369. [17] KOHANSAL A. On estimation of reliability in a multicomponent stress-strength model for a Kumaraswamy distribution based on progressively censored sample[J]. Statistical Papers , 2019, 60(6): 2185-2224. [18] PRATAP S D, KUMAR J M, YOGESH T, et al. Reliability estimation in a multicomponent stress-strength model for unit Burr Ⅲ distribution under progressive censoring[J]. Quality Technology & Quantitative Management, 2022, 19(5): 605-632. [19] MAHTO A K, TRIPATHI Y M, KIZILASLAN F. Estimation of reliability in a multicomponent stress-strength model for a general class of inverted exponentiated distributions under progressive censoring[J]. Journal of Statistical Theory and Practice, 2020, 14(4): 58. [20] JHA M K, DEY S, ALOTAIBI R M, et al. Reliability estimation of a multicomponentstress-strength model for unit Gompertz distribution under progressive Type Ⅱ censoring[J]. Quality and Reliability Engineering International, 2020, 36: 965-987 [21] KOHANSAL A, SHOAEE S. Bayesian and classical estimation of reliability in a multicomponent stress-strength model under adaptive hybrid progressive censored data[J]. Statistical Papers, 2021, 62(1): 309-359. [22] DEBASIS K, AVIJIT J. Analysis of type-Ⅱ progressively hybrid censored data[J]. Computational Statistics and Data Analysis, 2006, 50(10): 2509-2528. [23] 刘一鸣. 多部件系统应力强度模型的可靠性分析[D]. 西安:西北工业大学, 2019. [24] 孙烨, 蒋京京, 王纯杰. 广义极值回归模型下现状数据的贝叶斯估计[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 82-90. [25] TIERNEY L, KADANE J B. Accurate approximations for posterior moments and marginal densities[J]. Journal of the American Statistical Association, 1986, 81(393): 82-86. [26] 韦来生, 张伟平.贝叶斯分析[M]. 合肥:中国科学技术大学出版社, 2013. [27] 罗君念,蔡静,张峰源.广义逆指数分布应力-强度模型的可靠性评估[J]. 湖北民族大学学报(自然科学版), 2023, 41(1): 102-108. [28] HASTINGS W K. Monte Carlo sampling methods using Markov chains and their applications[J]. Biometrika, 1970, 57(1): 97-109. |
[1] | 陈钟秀, 张兴发, 熊强, 宋泽芳. 非对称DAR模型的估计与检验[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 68-81. |
[2] | 孙烨, 蒋京京, 王纯杰. 广义极值回归模型下现状数据的贝叶斯估计[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 82-90. |
[3] | 梁鑫, 陈小玲, 张兴发, 李元. 一类带有GARCH类误差项的自回归滑动平均模型[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 195-205. |
[4] | 李莉丽, 张兴发, 李元, 邓春亮. 基于高频数据的日频GARCH模型估计[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 68-78. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |