广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (1): 1-16.doi: 10.16088/j.issn.1001-6600.2022071801

• 综述 •    下一篇

互补序列研究进展

周正春   

  1. 西南交通大学信息科学与技术学院, 四川 成都 611756
  • 收稿日期:2022-07-18 修回日期:2022-08-15 出版日期:2023-01-25 发布日期:2023-03-07
  • 通讯作者: 周正春(1978—),男,江西九江人,西南交通大学教授,博导,2013年获全国百篇优秀博士学位论文奖,2018年入选第四批国家“青年拔尖人才”。E-mail:zzc@swjtu.edu.cn
  • 基金资助:
    国家自然科学基金重点项目(62131016)

Research Progress of Complementary Sequences

ZHOU Zhengchun   

  1. School of Information Science and Technology, Southwest Jiaotong University, Chengdu Sichuan 611756, China
  • Received:2022-07-18 Revised:2022-08-15 Online:2023-01-25 Published:2023-03-07

摘要: 互补序列(也称为互补码)因其完美的相关性被广泛应用于通信、雷达、信息安全等领域,其与Hadamard矩阵、Reed-Muller码、差族、广义布尔函数等数学结构之间具有紧密联系。鉴于其重要理论意义和应用价值,互补序列一直是序列编码领域的研究热点,大量研究成果被报道。本文系统介绍互补序列的研究现状,重点梳理Golay序列、互补序列、互正交互补序列、Z互补序列的构造方法和参数。

关键词: 互补码, 序列设计, 通信系统, 雷达系统, Z互补码

Abstract: Due to their perfect correlation properties, complementary sequences (also called complementary codes) have been widely used in communication, radar, information security and other fields. In addition, there are deep connections between complementary sequences and mathematical structures such as Hadamard matrices, Reed-Muller codes, difference families, and generalized Boolean functions. In view of its important theoretical significance and application value, complementary sequences have been a hot research topic in the field of sequence coding, and a large number of research results have been reported. The objective of this paper is to give a well-rounded treatment of complementary sequences, focusing on the construction methods and parameters of complementary sequences, mutually orthogonal complementary sequences, and Z-complementary sequences.

Key words: complementary codes, sequence design, communication systems, radar systems, Z-complementary codes

中图分类号: 

  • TN921
[1] SCHMIDL T M, COX D C. Robust frequency and timing synchronization for OFDM[J]. IEEE Transactions on Communications, 1997, 45(12):1613-1621. DOI:10.1109/26.650240.
[2]SALEHI J A. Code division multiple-access techniques in optical fiber networks. I. Fundamental principles[J]. IEEE Transactions on Communications, 1989, 37(8):824-833. DOI:10.1109/26.31181.
[3]PEZESHKI A, CALDERBANK A R, MORAN W, et al. Doppler resilient Golay complementary waveforms[J]. IEEE Transactions on Information Theory, 2008, 54(9):4254-4266. DOI:10.1109/TIT.2008.928292.
[4]WANG J, FAN P, ZHOU Z, et al. Quasi-orthogonal Z-complementary pairs and their applications in fully polarimetric radar systems[J]. IEEE Transactions on Information Theory, 2021, 67(7):4876-4890. DOI:10.1109/TIT.2021.3063764.
[5]JIANG X. Code hopping communications for anti-interception with real-valued QZCZ sequences[J]. IEEE Transactions on Communications, 2011, 59(3):680-685. DOI:10.1109/TCOMM.2011.012711.090267.
[6]LEE J S, MILLER L E. CDMA systems engineering handbook[M]. Boston:Artech House, 1998.
[7]KHAN F.LTE for 4G mobile broadband:air interface technologies and performance[M]. Cambridge:Cambridge University Press, 2009.
[8]YANG C C, HUANG J F, TSENG S P. Optical CDMA network codecs structured with M-sequence codes over waveguide-grating routers[J]. IEEE Photonics Technology Letters, 2004, 16(2):641-643. DOI:10.1109/LPT.2003.823089.
[9]SUN C, GAO X Q,JIN S, et al. Beam division multiple access transmission for massive MIMO communications[J]. IEEE Transactions on Communications, 2015,63(6):2170-2184. DOI:10.1109/TCOMM.2015.2425882.
[10]GOLOMB S W, GONG G. Signal design for good correlation for wireless communication, cryptography and radar[M]. Cambridge:Cambridge University Press, 2005.
[11]GOLAY M J. Static multislit spectrometry and its application to the panoramic display of infrared spectra[J]. Journal of the Optical Society of America, 1951, 41(7):468-472. DOI:10.1364/JOSA.41.000468.
[12]GOLAY M J. Complementary series[J]. IRE Transactions on Information Theory, 1961,7(2):82-87. DOI:10.1109/TIT.1961.1057620.
[13]SIVASWAMY R. Multiphase complementary codes[J]. IEEE Transactions on Information Theory, 1978, 24(5):546-552. DOI:10.1109/tit.1978.1055936.
[14]FRANK R. Polyphase complementary codes[J]. IEEE Transactions on Information Theory, 1980, 26(6):641-647. DOI:10.1109/tit.1980.1056272.
[15]GRIFFIN M. There are no Golay sequences of length 2×9t[J]. Aequationes Mathematicae, 1977, 15(1):73-77. DOI:10.1007/bf01837875.
[16]KOUNIAS S, KOUKOUVINOS C, SOTIRAKOGLOU K. On Golay sequences[J]. Discrete Mathematics, 1991, 92(1/2/3):177-185. DOI:10.1016/0012-365X(91)90279-B.
[17]ELIAHOU S, KERVAIRE M, SAFFARI B. A new restriction on the lengths of Golay complementary sequences[J]. Journal of Combinatorial Theory: Series A, 1990, 55(1):49-59. DOI:10.1016/0097-3165(90)90046-Y.
[18]SPASOJEVIC P, GEORGHIADES C N. Complementary sequences for ISI channel estimation[J]. IEEE Transactions on Information Theory, 2001, 47(3):1145-1152. DOI:10.1109/18.915670.
[19]CHEN H H, YEH J F, SEUHIRO N. A multicarrier CDMA architecture based on orthogonal complementary codes for new generations of wideband wireless communications[J]. IEEE Communications Magazine, 2001, 39(10):126-135. DOI:10.1109/35.956124.
[20]DAVIS J A, JEDWAB J. Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes[J]. IEEE Transactions on Information Theory, 1999, 45(7):2397-2417. DOI:10.1109/18.796380.
[21]AHIN A, YANG R. An uplink control channel design with complementary sequences for unlicensed bands[J]. IEEE Transactions on Wireless Communications, 2020, 19(10):6858-5875. DOI:10.1109/TWC.2020.3006395.
[22]BORWEIN P B, FERGUSON R A. A complete description of Golay pairs for lengths up to 100[J]. Mathematics of Computation, 2003, 73(246):967-985. DOI:10.1090/S0025-5718-03-01576-X.
[23]GRAIGEN R, HOLZMANN W, KHARAGHANI H. Complex Golay sequences:structure and applications[J]. Discrete Mathematics, 2002, 252(1/2/3):73-89. DOI:10.1016/S0012-365X(01)00162-5.
[24]CHEN C Y. A novel construction of complementary sets with flexible lengths based on Boolean functions[J]. IEEE Communications Letters, 2018, 22(2):260-263. DOI:10.1109/LCOMM.2017.2773093.
[25]TSENG C C,LIU C. Complementary sets of sequences[J]. IEEE Transactions on Information Theory, 1972, 18(5):644-652. DOI:10.1109/TIT.1972.1054860.
[26]PATERSON K G. Generalized Reed Muller codes and power control in OFDM modulation[J]. IEEE Transactions on Information Theory, 2000, 46(1):104-120. DOI:10.1109/18.817512.
[27]SUEHIRO N, HATORI M. N-shift cross-orthogonal sequences[J]. IEEE Transactions on Information Theory, 1988, 34(1):143-146. DOI:10.1109/18.2615.
[28]HAN S, VENKATESAN R, CHEN H H, et al. A complete complementary coded MIMO system and its performance in multipath channels[J]. IEEE Wireless Communications Letters, 2014, 3(2):181-184. DOI:10.1109/WCL.2014.010414.130726.
[29]TANG J, ZHANG N, MA Z K, et al. Construction of doppler resilient complete complementary code in MIMO radar[J]. IEEE Transactions on Signal Processing, 2014, 62(18):4704-4712. DOI:10.1109/TSP.2014.2337272.
[30]FAN P Z, YUAN W N, TU Y F. Z-complementary binary sequences[J]. IEEE Signal Processing Letters, 2007, 14(8):509-512. DOI:10.1109/LSP.2007.891834.
[31]LI X D, FAN P Z, TANG X H, et al. Existence of binary Z-complementary pairs[J]. IEEE Signal Processing Letters, 2011, 18(1):63-66. DOI:10.1109/LSP.2010.2095459.
[32]BOMER L, ANTWEILER M. Periodic complementary binary sequences[J]. IEEE Transactions on Information Theory, 1990, 36(6):1487-1494. DOI:10.1109/18.59954.
[33]LUKE H D. Binary odd-periodic complementary sequences[J]. IEEE Transactions on Information Theory, 1997, 43(1):365-367. DOI:10.1109/18.567768.
[34]BUDIIN S Z. New complementary pairs of sequences[J]. Electronics Letters, 1990, 26(13):881-883. DOI:10.1049/el:19900576.
[35]TURYN R J. Hadamard matrices, Baumert-Hall units, four-symbol sequences, pulse compression, and surface wave encodings[J]. Journal of Combinatorial Theory: Series A, 1974, 16(3):313-333. DOI:10.1016/0097-3165(74)90056-9.
[36]LI Y, CHU W B . More Golay sequences[J]. IEEE Transactions on Information Theory, 2005, 51(3):1141-1145. DOI:10.1109/TIT.2004.842775.
[37]GONG G, HUO F, YANG Y. Large zero autocorrelation zones of Golay sequences and their applications[J]. IEEE Transactions on Communications, 2013, 61(9):3967-3979. DOI:10.1109/TCOMM.2013.072813.120928.
[38]CHEN C Y, WU S W. Golay complementary sequence sets with large zero correlation zones[J]. IEEE Transactions on Communications, 2018, 66(11):5197-5204. DOI:10.1109/TCOMM.2018.2857485.
[39]FAN P Z, SUEHIRO N, KUROYANAGI N, et al. Class of binary sequences with zero correlation zone[J]. Electronics Letters, 1999, 35(10):777-779. DOI:10.1049/el:19990567.
[40]GU Z, ZHOU Z, ADHIKARY A R, et al. Construction of Golay-ZCZ sequences with new lengths[C]// 2021 IEEE International Symposium on Information Theory(ISIT). Piscataway, NJ: IEEE, 2021:1802-1805. DOI:10.1109/ISIT45174.2021.9518058.
[41]ZHOU Z C, LI J D, YANG Y, et al. Two constructions of quaternary periodic complementary pairs[J]. IEEE Communications Letters, 2018, 22(12):2507-2510. DOI:10.1109/LCOMM.2018.2876530.
[42]SHEN B S, YANG Y, ZHOU Z C. A construction of binary Golay complementary sets based on even-shift complementary pairs[J]. IEEE Access, 2020, 8:29882-29890. DOI:10.1109/ACCESS.2020.2972598.
[43]SCHMIDT K U. Complementary sets, generalized Reed Muller codes, and power control for OFDM[J]. IEEE Transactions on Information Theory, 2007, 53(2):808-814. DOI:10.1109/TIT.2006.889723.
[44]WU G F, ZHANG Y Q, LIU X F. New complementary sets of length 2m and size 4[J]. Advances in Mathematics of Communications, 2016, 10(4):825-845. DOI:10.3934/amc.2016043.
[45]SARKAR P, MAJHI S, LIU Z L, et al. A direct and generalized construction of polyphase complementary sets with low PMEPR and high code-rate for OFDM system[J]. IEEE Transactions on Communications, 2020, 68(10):6245-6262. DOI:10.1109/TCOMM.2020.3007390.
[46]CHEN C Y. Complementary sets of non-power-of-two length for peak-to-average power ratio reduction in OFDM[J]. IEEE Transactions on Information Theory, 2016, 62(12):7538-7545. DOI:10.1109/TIT.2016.2613994.
[47]WANG G X, ADHIKARY A R, ZHOU Z C, et al. Generalized constructions of complementary sets of sequences of lengths non-power-of-two[J]. IEEE Signal Processing Letters, 2020, 27:136-140. DOI:10.1109/LSP.2019.2960155.
[48]SHEN B S, YANG Y, FAN P Z, et al. New Z-complementary/complementary sequence sets with non-power-of-two length and low PAPR[J]. Cryptography and Communications, 2022, 14(4):817-832. DOI:10.1007/s12095-021-00550-7.
[49]ADHIKARY A R, MAJHI S.New constructions of complementary sets of sequences of lengths non-power-of-two[J]. IEEE Communications Letters, 2019, 23(7):1119-1122. DOI:10.1109/LCOMM.2019.2913382.
[50]WANG Z L, MA D X, GONG G, et al. New construction of complementary sequence(or array) sets and complete complementary codes[J]. IEEE Transactions on Information Theory, 2021, 67(7):4902-4928. DOI:10.1109/TIT.2021.3079124.
[51]HAN C G, SUEHIRO N. A generation method for constructing (N,N,MN/P) complete complementary sequences[C]// Proceedings of Joint 1st Workshop on Mobile Future & Symposium on Trends In Communications. Bratislava:IEEE Press, 2004:70-73.
[52]HAN C G, SUEHIRO N, HASHIMOTO T. A systematic framework for the construction of optimal complete complementary codes[J]. IEEE Transactions on Information Theory, 2011, 57(9):6033-6042. DOI:10.1109/TIT.2011.2162182.
[53]DAS S, MAJHI S, BUDIIN S, et al. A new construction framework for polyphase complete complementary codes with various lengths[J]. IEEE Transactions on Signal Processing, 2019,67(10):2639-2648. DOI:10.1109/TSP.2019.2908137.
[54]RATHINAKUMAR A, CHATURVEDI A K.Complete mutually orthogonal Golay complementary sets from Reed-Muller Codes[J]. IEEE Transactions on Information Theory, 2008, 54(3):1339-1346. DOI:10.1109/TIT.2007.915980.
[55]LIU Z L, GUAN Y L, PARAMPALLI U. New complete complementary codes for peak-to-mean power control in multi-carrier CDMA[J]. IEEE Transactions on Communications, 2014, 62(3):1105-1113. DOI:10.1109/TCOMM.2013.122013.130148.
[56]WU S W, CHEN C Y, LIU Z L. How to construct mutually orthogonal complementary sets with non-power-of-two lengths?[J]. IEEE Transactions on Information Theory, 2021, 67(6):3464-3472. DOI:10.1109/TIT.2020. 2980818.
[57]ZHANG Z Y, ZENG F X, XUAN G X. Mutually orthogonal sets of complementary sequences for multi-carrier CDMA systems[C]// Proceedings of the 6th International Conference on Wireless Communications Networking and Mobile Computing, Chengdu:IEEE Press, 2010:1-4. DOI:10.1109/WICOM.2010.5600252.
[58]SHEN B S, YANG Y H, FENG Y H, et al. A generalized construction of mutually orthogonal complementary sequence sets with non-power-of-two lengths[J]. IEEE Transactions on Communications, 2021, 69(7):4247-4253. DOI:10.1109/TCOMM.2021.3070349.
[59]ZHOU Z C, LIU F R, ADHIKARY A R, et al. A generalized construction of multiple complete complementary codes and asymptotically optimal aperiodic quasi-complementary sequence sets[J]. IEEE Transactions on Communications, 2020, 68(6):3564-3571. DOI:10.1109/TCOMM.2020.2978182.
[60]LIU Z L, PARAMPALLI U, GUAN Y L, et al. On even-period binary Z-complementary pairs with large ZCZs[J]. IEEE Signal Processing Letters, 2014, 21(3):284-287. DOI:10.1109/LSP.2014.2300163.
[61]LIU Z L, GUAN Y L, PARAMPALLI U. On optimal binary Z-complementary pair of odd period[C]// Proceedings of 2013 IEEE International Symposium on Information Theory(ISIT). Istanbul:IEEE Press, 2013:3125-3129.
[62]LIU Z L, PARAMPALLI U, GUAN Y L. Optimal odd-length binary Z-complementary pairs[J]. IEEE Transactions on Information Theory, 2014, 60(9):5768-5781. DOI:10.1109/TIT.2014.2335731.
[63]GU Z, ZHOU Z C, WANG Q, et al. New construction of optimal Type-II binary Z-complementary pairs[J]. IEEE Transactions on Information Theory, 2021, 67(6):3497-3508. DOI:10.1109/TIT.2020.3007670.
[64]ADHIKARY A R, MAJHI S, LIU Z L, et al. New sets of optimal odd-length binary Z-complementary pairs[J]. IEEE Transactions on Information Theory, 2020, 66(1):669-678. DOI:10.1109/TIT.2019.2944185.
[65]SHEN B S, YANG Y, ZHOU Z C, et al. New optimal binary Z-complementary pairs of odd length 2m+3[J]. IEEE Signal Processing Letters, 2019, 26(12):1931-1934. DOI:10.1109/LSP.2019.2954805.
[66]TIAN S C, YANG M, WANG J P. Two constructions of binary Z-complementary pairs[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2021, E104-A(4):768-772. DOI:10.1587/transfun.2020EAL2069
[67]ADHIKARY A R, MAJHI S, LIU Z L, et al. New sets of even-length binary Z-complementary pairs with asymptotic ZCZ ratio of 3/4[J]. IEEE Signal Processing Letters, 2018, 25(7):970-973. DOI:10.1109/LSP.2018.2834143.
[68]XIE C L, SUN Y J. Constructions of even-period binary Z-complementary pairs with large ZCZs[J]. IEEE Signal Processing Letters, 2018, 25(8):1141-1145. DOI:10.1109/LSP.2018.2848102.
[69]PAI C Y, WU S W, CHEN C Y. Z-complementary pairs with flexible lengths from generalized Boolean functions[J]. IEEE Communications Letters, 2020, 24(6):1183-1187. DOI:10.1109/LCOMM.2020.2981023.
[70]GU Z, YANG Y, ZHOU Z C. New sets of even-length binary Z-complementary pairs[C]// 2019 Ninth International Workshop on Signal Design and its Applications in Communications(IWSDA). Piscataway, NJ:IEEE, 2019:1-5. DOI:10.1109/IWSDA46143.2019.8966113.
[71]YU T, DU X N, LI L P, et al. Constructions of even-length Z-complementary pairs with large zero correlation zones[J]. IEEE Signal Processing Letters, 2021, 28:828-831. DOI:10.1109/LSP.2021.3055482.
[72]KUMAR R, SARKAR P, SRIVASTAVA P K, et al. A direct construction of asymptotically optimal Type-II ZCP for every possible even length[J]. IEEE Signal Processing Letters, 2021, 28:1799-1782. DOI:10.1109/LSP.2021.3105927.
[73]FENG L F, FAN P Z, TANG X H, et al. Generalized pairwise Z-complementary codes[J]. IEEE Signal Processing Letters, 2008, 15:377-380. DOI:10.1109/LSP.2008.919997.
[74]FENG L F, FAN P Z, ZHOU X W. Lower bounds on correlation of Z-complementary code sets[J]. Wireless Personal Communications, 2013, 72(2):1475-1488. DOI:10.1007/s11277-013-1090-3.
[75]ZENG F X, ZENG X P, ZHANG Z Y, et al. New construction method for quaternary aperiodic, periodic, and Z-complementary sequence sets[J]. Journal of Communications and Networks, 2012, 14(3):230-236. DOI:10.1109/JCN.2012.6253082.
[76]LI X D, FAN P Z, TANG X H, et al. Quadriphase Z-complementary sequences[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2010, E93-A(11):2251-2257. DOI:10.1587/TRANSFUN.E93.A.2251.
[77]ADHIKARY A R, MAJHI S.New construction of optimal aperiodic Z-complementary sequence sets of odd-lengths[J]. Electronics Letters, 2019, 55(19):1043-1045. DOI:10.1049/el.2019.1828.
[78]李玉博, 许成谦, 刘凯. 一类四元零相关区非周期互补序列集构造法[J]. 电子学报, 2015, 43(9):1800-1804. DOI:10.3969/j.issn.0372-2112.2015.09.018.
[79]LI Y B, SUN J A, XU C Q, et al. Constructions of optimal zero correlation zone aperiodic complementary sequence sets[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2017, E100-A(3):908-912. DOI:10.1587/transfun.E100.A.908.
[80]LI Y B, XU C Q. ZCZ aperiodic complementary sequence sets with low column sequence PMEPR[J]. IEEE Communications Letters, 2015, 19(8):1303-1306. DOI:10.1109/LCOMM.2015.2446473.
[81]李玉博, 田立影. 基于正交矩阵构造非周期组间互补序列集[J]. 电子与信息学报, 2018, 40(8):2028-2032. DOI:10.11999/JEIT171005.
[82]CHEN X Y, LI G M, LI H C. Two constructions of zero correlation zone aperiodic complementary sequence sets[J]. IET Communications, 2020, 14(4):556-560. DOI:10.1049/iet-com.2019.0599.
[83]陈晓玉, 苏荷茹, 高茜超. 一类最优的零相关区非周期互补序列集构造法[J]. 电子与信息学报, 2021, 43(2):461-466. DOI:10.11999/JEIT190703.
[84]崔莉, 许成谦. 两类最优零相关区非周期互补序列集的构造[J]. 电子与信息学报:2022,44(12):4304-4311. DOI:10.11999/JEIT210950.
[85]WU S W, CHEN C. Optimal Z-complementary sequence sets with good peak-to-average power-ratio property[J]. IEEE Signal Processing Letters, 2018, 25(20):1500-1504. DOI:10.1109/LSP.2018.2864705.
[86]WU S W, AHIN A, HUANG Z M, et al. Z-complementary code sets with flexible lengths from generalized Boolean functions[J]. IEEE Access, 2021, 9:4642-4652. DOI:10.1109/ACCESS.2020.3047955.
[87]SARKAR P, MAJHI S, LIU Z L. Optimal Z-complementary code set from generalized Reed-Muller codes[J]. IEEE Transactions on Communications, 2019, 67(3):1783-1796. DOI:10.1109/TCOMM.2018. 2883469.
[88]SARKAR P, ROY A, MAJHI S. Construction of Z-complementary code sets with non-power-of-two lengths based on generalized Boolean functions[J]. IEEE Communications Letters, 2020, 24(8):1607-1611. DOI:10.1109/LCOMM.2020.2987625.
[89]SARKAR P, MAJHI S. A direct construction of optimal ZCCS with maximum column sequence PMEPR two for MC-CDMA system[J]. IEEE Communications Letters, 2021, 25(2):337-341. DOI:10.1109/LCOMM.2020.3029204.
[90]SARKAR P, MAJHI S, LIU Z L. Pseudo-Boolean functions for optimal Z-complementary code sets with flexible lengths[J]. IEEE Signal Processing Letters, 2021, 28:1350-1354. DOI:10.1109/LSP.2021.3091886.
[91]SHEN B S, YANG Y, ZHOU Z C. New constructions of Z-complementary code sets and mutually orthogonal complementary sequence sets[EB/OL].(2021-05-21)[2022-07-18].https://arxiv.org/abs/2105.10147. DOI:10.48550/arXiv.2105.10147.
[1] 武康康, 周鹏, 陆叶, 蒋丹, 闫江鸿, 钱正成, 龚闯. 基于小批量梯度下降法的FIR滤波器[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 9-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈梦华,刘敏,王宁. Weizscker-Skyrme核质量公式的理论预言能力研究[J]. 广西师范大学学报(自然科学版), 2018, 36(1): 1 -8 .
[2] 许伦辉,尹诗德,刘易家. 基于模拟退火的自适应布谷鸟算法求解公交调度问题[J]. 广西师范大学学报(自然科学版), 2018, 36(2): 1 -7 .
[3] 张敏, 辜凌云, 周勋, 刘艳辉. DNA凝聚理论模拟研究[J]. 广西师范大学学报(自然科学版), 2017, 35(3): 53 -62 .
[4] 唐高华, 李玉, 张恒斌, 吴严生. 一类有零因子的有限环的结构[J]. 广西师范大学学报(自然科学版), 2015, 33(1): 67 -73 .
[5] 徐久成, 李晓艳, 李双群, 张灵均. 基于相容粒的多层次纹理特征图像检索方法[J]. 广西师范大学学报(自然科学版), 2011, 29(1): 186 -187 .
[6] 刘希良, 宾石玉, 王开卓, 陈敦学, 成嘉, 张建社, 褚武英. 翘嘴鳜的人工繁殖与胚胎发育观察[J]. 广西师范大学学报(自然科学版), 2013, 31(2): 100 -106 .
[7] 黄丽明, 陈维政, 闫宏飞, 陈翀. 基于循环神经网络和深度学习的股票预测方法[J]. 广西师范大学学报(自然科学版), 2019, 37(1): 13 -22 .
[8] 韩博文. 考虑实时需求的需求响应式公交调度方法研究[J]. 广西师范大学学报(自然科学版), 2019, 37(3): 9 -20 .
[9] 徐建闽, 韦佳, 首艳芳. 基于博弈论-云模型的城市道路交通运行状态综合评价[J]. 广西师范大学学报(自然科学版), 2020, 38(4): 1 -10 .
[10] 罗奕杏, 唐启明, 薛跃规. 广西穿洞天坑苔藓植物多样性特征研究[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 104 -111 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发