|
广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (1): 1-16.doi: 10.16088/j.issn.1001-6600.2022071801
• 综述 • 下一篇
周正春
ZHOU Zhengchun
摘要: 互补序列(也称为互补码)因其完美的相关性被广泛应用于通信、雷达、信息安全等领域,其与Hadamard矩阵、Reed-Muller码、差族、广义布尔函数等数学结构之间具有紧密联系。鉴于其重要理论意义和应用价值,互补序列一直是序列编码领域的研究热点,大量研究成果被报道。本文系统介绍互补序列的研究现状,重点梳理Golay序列、互补序列、互正交互补序列、Z互补序列的构造方法和参数。
中图分类号:
[1] SCHMIDL T M, COX D C. Robust frequency and timing synchronization for OFDM[J]. IEEE Transactions on Communications, 1997, 45(12):1613-1621. DOI:10.1109/26.650240. [2]SALEHI J A. Code division multiple-access techniques in optical fiber networks. I. Fundamental principles[J]. IEEE Transactions on Communications, 1989, 37(8):824-833. DOI:10.1109/26.31181. [3]PEZESHKI A, CALDERBANK A R, MORAN W, et al. Doppler resilient Golay complementary waveforms[J]. IEEE Transactions on Information Theory, 2008, 54(9):4254-4266. DOI:10.1109/TIT.2008.928292. [4]WANG J, FAN P, ZHOU Z, et al. Quasi-orthogonal Z-complementary pairs and their applications in fully polarimetric radar systems[J]. IEEE Transactions on Information Theory, 2021, 67(7):4876-4890. DOI:10.1109/TIT.2021.3063764. [5]JIANG X. Code hopping communications for anti-interception with real-valued QZCZ sequences[J]. IEEE Transactions on Communications, 2011, 59(3):680-685. DOI:10.1109/TCOMM.2011.012711.090267. [6]LEE J S, MILLER L E. CDMA systems engineering handbook[M]. Boston:Artech House, 1998. [7]KHAN F.LTE for 4G mobile broadband:air interface technologies and performance[M]. Cambridge:Cambridge University Press, 2009. [8]YANG C C, HUANG J F, TSENG S P. Optical CDMA network codecs structured with M-sequence codes over waveguide-grating routers[J]. IEEE Photonics Technology Letters, 2004, 16(2):641-643. DOI:10.1109/LPT.2003.823089. [9]SUN C, GAO X Q,JIN S, et al. Beam division multiple access transmission for massive MIMO communications[J]. IEEE Transactions on Communications, 2015,63(6):2170-2184. DOI:10.1109/TCOMM.2015.2425882. [10]GOLOMB S W, GONG G. Signal design for good correlation for wireless communication, cryptography and radar[M]. Cambridge:Cambridge University Press, 2005. [11]GOLAY M J. Static multislit spectrometry and its application to the panoramic display of infrared spectra[J]. Journal of the Optical Society of America, 1951, 41(7):468-472. DOI:10.1364/JOSA.41.000468. [12]GOLAY M J. Complementary series[J]. IRE Transactions on Information Theory, 1961,7(2):82-87. DOI:10.1109/TIT.1961.1057620. [13]SIVASWAMY R. Multiphase complementary codes[J]. IEEE Transactions on Information Theory, 1978, 24(5):546-552. DOI:10.1109/tit.1978.1055936. [14]FRANK R. Polyphase complementary codes[J]. IEEE Transactions on Information Theory, 1980, 26(6):641-647. DOI:10.1109/tit.1980.1056272. [15]GRIFFIN M. There are no Golay sequences of length 2×9t[J]. Aequationes Mathematicae, 1977, 15(1):73-77. DOI:10.1007/bf01837875. [16]KOUNIAS S, KOUKOUVINOS C, SOTIRAKOGLOU K. On Golay sequences[J]. Discrete Mathematics, 1991, 92(1/2/3):177-185. DOI:10.1016/0012-365X(91)90279-B. [17]ELIAHOU S, KERVAIRE M, SAFFARI B. A new restriction on the lengths of Golay complementary sequences[J]. Journal of Combinatorial Theory: Series A, 1990, 55(1):49-59. DOI:10.1016/0097-3165(90)90046-Y. [18]SPASOJEVIC P, GEORGHIADES C N. Complementary sequences for ISI channel estimation[J]. IEEE Transactions on Information Theory, 2001, 47(3):1145-1152. DOI:10.1109/18.915670. [19]CHEN H H, YEH J F, SEUHIRO N. A multicarrier CDMA architecture based on orthogonal complementary codes for new generations of wideband wireless communications[J]. IEEE Communications Magazine, 2001, 39(10):126-135. DOI:10.1109/35.956124. [20]DAVIS J A, JEDWAB J. Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes[J]. IEEE Transactions on Information Theory, 1999, 45(7):2397-2417. DOI:10.1109/18.796380. [21]AHIN A, YANG R. An uplink control channel design with complementary sequences for unlicensed bands[J]. IEEE Transactions on Wireless Communications, 2020, 19(10):6858-5875. DOI:10.1109/TWC.2020.3006395. [22]BORWEIN P B, FERGUSON R A. A complete description of Golay pairs for lengths up to 100[J]. Mathematics of Computation, 2003, 73(246):967-985. DOI:10.1090/S0025-5718-03-01576-X. [23]GRAIGEN R, HOLZMANN W, KHARAGHANI H. Complex Golay sequences:structure and applications[J]. Discrete Mathematics, 2002, 252(1/2/3):73-89. DOI:10.1016/S0012-365X(01)00162-5. [24]CHEN C Y. A novel construction of complementary sets with flexible lengths based on Boolean functions[J]. IEEE Communications Letters, 2018, 22(2):260-263. DOI:10.1109/LCOMM.2017.2773093. [25]TSENG C C,LIU C. Complementary sets of sequences[J]. IEEE Transactions on Information Theory, 1972, 18(5):644-652. DOI:10.1109/TIT.1972.1054860. [26]PATERSON K G. Generalized Reed Muller codes and power control in OFDM modulation[J]. IEEE Transactions on Information Theory, 2000, 46(1):104-120. DOI:10.1109/18.817512. [27]SUEHIRO N, HATORI M. N-shift cross-orthogonal sequences[J]. IEEE Transactions on Information Theory, 1988, 34(1):143-146. DOI:10.1109/18.2615. [28]HAN S, VENKATESAN R, CHEN H H, et al. A complete complementary coded MIMO system and its performance in multipath channels[J]. IEEE Wireless Communications Letters, 2014, 3(2):181-184. DOI:10.1109/WCL.2014.010414.130726. [29]TANG J, ZHANG N, MA Z K, et al. Construction of doppler resilient complete complementary code in MIMO radar[J]. IEEE Transactions on Signal Processing, 2014, 62(18):4704-4712. DOI:10.1109/TSP.2014.2337272. [30]FAN P Z, YUAN W N, TU Y F. Z-complementary binary sequences[J]. IEEE Signal Processing Letters, 2007, 14(8):509-512. DOI:10.1109/LSP.2007.891834. [31]LI X D, FAN P Z, TANG X H, et al. Existence of binary Z-complementary pairs[J]. IEEE Signal Processing Letters, 2011, 18(1):63-66. DOI:10.1109/LSP.2010.2095459. [32]BOMER L, ANTWEILER M. Periodic complementary binary sequences[J]. IEEE Transactions on Information Theory, 1990, 36(6):1487-1494. DOI:10.1109/18.59954. [33]LUKE H D. Binary odd-periodic complementary sequences[J]. IEEE Transactions on Information Theory, 1997, 43(1):365-367. DOI:10.1109/18.567768. [34]BUDIIN S Z. New complementary pairs of sequences[J]. Electronics Letters, 1990, 26(13):881-883. DOI:10.1049/el:19900576. [35]TURYN R J. Hadamard matrices, Baumert-Hall units, four-symbol sequences, pulse compression, and surface wave encodings[J]. Journal of Combinatorial Theory: Series A, 1974, 16(3):313-333. DOI:10.1016/0097-3165(74)90056-9. [36]LI Y, CHU W B . More Golay sequences[J]. IEEE Transactions on Information Theory, 2005, 51(3):1141-1145. DOI:10.1109/TIT.2004.842775. [37]GONG G, HUO F, YANG Y. Large zero autocorrelation zones of Golay sequences and their applications[J]. IEEE Transactions on Communications, 2013, 61(9):3967-3979. DOI:10.1109/TCOMM.2013.072813.120928. [38]CHEN C Y, WU S W. Golay complementary sequence sets with large zero correlation zones[J]. IEEE Transactions on Communications, 2018, 66(11):5197-5204. DOI:10.1109/TCOMM.2018.2857485. [39]FAN P Z, SUEHIRO N, KUROYANAGI N, et al. Class of binary sequences with zero correlation zone[J]. Electronics Letters, 1999, 35(10):777-779. DOI:10.1049/el:19990567. [40]GU Z, ZHOU Z, ADHIKARY A R, et al. Construction of Golay-ZCZ sequences with new lengths[C]// 2021 IEEE International Symposium on Information Theory(ISIT). Piscataway, NJ: IEEE, 2021:1802-1805. DOI:10.1109/ISIT45174.2021.9518058. [41]ZHOU Z C, LI J D, YANG Y, et al. Two constructions of quaternary periodic complementary pairs[J]. IEEE Communications Letters, 2018, 22(12):2507-2510. DOI:10.1109/LCOMM.2018.2876530. [42]SHEN B S, YANG Y, ZHOU Z C. A construction of binary Golay complementary sets based on even-shift complementary pairs[J]. IEEE Access, 2020, 8:29882-29890. DOI:10.1109/ACCESS.2020.2972598. [43]SCHMIDT K U. Complementary sets, generalized Reed Muller codes, and power control for OFDM[J]. IEEE Transactions on Information Theory, 2007, 53(2):808-814. DOI:10.1109/TIT.2006.889723. [44]WU G F, ZHANG Y Q, LIU X F. New complementary sets of length 2m and size 4[J]. Advances in Mathematics of Communications, 2016, 10(4):825-845. DOI:10.3934/amc.2016043. [45]SARKAR P, MAJHI S, LIU Z L, et al. A direct and generalized construction of polyphase complementary sets with low PMEPR and high code-rate for OFDM system[J]. IEEE Transactions on Communications, 2020, 68(10):6245-6262. DOI:10.1109/TCOMM.2020.3007390. [46]CHEN C Y. Complementary sets of non-power-of-two length for peak-to-average power ratio reduction in OFDM[J]. IEEE Transactions on Information Theory, 2016, 62(12):7538-7545. DOI:10.1109/TIT.2016.2613994. [47]WANG G X, ADHIKARY A R, ZHOU Z C, et al. Generalized constructions of complementary sets of sequences of lengths non-power-of-two[J]. IEEE Signal Processing Letters, 2020, 27:136-140. DOI:10.1109/LSP.2019.2960155. [48]SHEN B S, YANG Y, FAN P Z, et al. New Z-complementary/complementary sequence sets with non-power-of-two length and low PAPR[J]. Cryptography and Communications, 2022, 14(4):817-832. DOI:10.1007/s12095-021-00550-7. [49]ADHIKARY A R, MAJHI S.New constructions of complementary sets of sequences of lengths non-power-of-two[J]. IEEE Communications Letters, 2019, 23(7):1119-1122. DOI:10.1109/LCOMM.2019.2913382. [50]WANG Z L, MA D X, GONG G, et al. New construction of complementary sequence(or array) sets and complete complementary codes[J]. IEEE Transactions on Information Theory, 2021, 67(7):4902-4928. DOI:10.1109/TIT.2021.3079124. [51]HAN C G, SUEHIRO N. A generation method for constructing (N,N,MN/P) complete complementary sequences[C]// Proceedings of Joint 1st Workshop on Mobile Future & Symposium on Trends In Communications. Bratislava:IEEE Press, 2004:70-73. [52]HAN C G, SUEHIRO N, HASHIMOTO T. A systematic framework for the construction of optimal complete complementary codes[J]. IEEE Transactions on Information Theory, 2011, 57(9):6033-6042. DOI:10.1109/TIT.2011.2162182. [53]DAS S, MAJHI S, BUDIIN S, et al. A new construction framework for polyphase complete complementary codes with various lengths[J]. IEEE Transactions on Signal Processing, 2019,67(10):2639-2648. DOI:10.1109/TSP.2019.2908137. [54]RATHINAKUMAR A, CHATURVEDI A K.Complete mutually orthogonal Golay complementary sets from Reed-Muller Codes[J]. IEEE Transactions on Information Theory, 2008, 54(3):1339-1346. DOI:10.1109/TIT.2007.915980. [55]LIU Z L, GUAN Y L, PARAMPALLI U. New complete complementary codes for peak-to-mean power control in multi-carrier CDMA[J]. IEEE Transactions on Communications, 2014, 62(3):1105-1113. DOI:10.1109/TCOMM.2013.122013.130148. [56]WU S W, CHEN C Y, LIU Z L. How to construct mutually orthogonal complementary sets with non-power-of-two lengths?[J]. IEEE Transactions on Information Theory, 2021, 67(6):3464-3472. DOI:10.1109/TIT.2020. 2980818. [57]ZHANG Z Y, ZENG F X, XUAN G X. Mutually orthogonal sets of complementary sequences for multi-carrier CDMA systems[C]// Proceedings of the 6th International Conference on Wireless Communications Networking and Mobile Computing, Chengdu:IEEE Press, 2010:1-4. DOI:10.1109/WICOM.2010.5600252. [58]SHEN B S, YANG Y H, FENG Y H, et al. A generalized construction of mutually orthogonal complementary sequence sets with non-power-of-two lengths[J]. IEEE Transactions on Communications, 2021, 69(7):4247-4253. DOI:10.1109/TCOMM.2021.3070349. [59]ZHOU Z C, LIU F R, ADHIKARY A R, et al. A generalized construction of multiple complete complementary codes and asymptotically optimal aperiodic quasi-complementary sequence sets[J]. IEEE Transactions on Communications, 2020, 68(6):3564-3571. DOI:10.1109/TCOMM.2020.2978182. [60]LIU Z L, PARAMPALLI U, GUAN Y L, et al. On even-period binary Z-complementary pairs with large ZCZs[J]. IEEE Signal Processing Letters, 2014, 21(3):284-287. DOI:10.1109/LSP.2014.2300163. [61]LIU Z L, GUAN Y L, PARAMPALLI U. On optimal binary Z-complementary pair of odd period[C]// Proceedings of 2013 IEEE International Symposium on Information Theory(ISIT). Istanbul:IEEE Press, 2013:3125-3129. [62]LIU Z L, PARAMPALLI U, GUAN Y L. Optimal odd-length binary Z-complementary pairs[J]. IEEE Transactions on Information Theory, 2014, 60(9):5768-5781. DOI:10.1109/TIT.2014.2335731. [63]GU Z, ZHOU Z C, WANG Q, et al. New construction of optimal Type-II binary Z-complementary pairs[J]. IEEE Transactions on Information Theory, 2021, 67(6):3497-3508. DOI:10.1109/TIT.2020.3007670. [64]ADHIKARY A R, MAJHI S, LIU Z L, et al. New sets of optimal odd-length binary Z-complementary pairs[J]. IEEE Transactions on Information Theory, 2020, 66(1):669-678. DOI:10.1109/TIT.2019.2944185. [65]SHEN B S, YANG Y, ZHOU Z C, et al. New optimal binary Z-complementary pairs of odd length 2m+3[J]. IEEE Signal Processing Letters, 2019, 26(12):1931-1934. DOI:10.1109/LSP.2019.2954805. [66]TIAN S C, YANG M, WANG J P. Two constructions of binary Z-complementary pairs[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2021, E104-A(4):768-772. DOI:10.1587/transfun.2020EAL2069 [67]ADHIKARY A R, MAJHI S, LIU Z L, et al. New sets of even-length binary Z-complementary pairs with asymptotic ZCZ ratio of 3/4[J]. IEEE Signal Processing Letters, 2018, 25(7):970-973. DOI:10.1109/LSP.2018.2834143. [68]XIE C L, SUN Y J. Constructions of even-period binary Z-complementary pairs with large ZCZs[J]. IEEE Signal Processing Letters, 2018, 25(8):1141-1145. DOI:10.1109/LSP.2018.2848102. [69]PAI C Y, WU S W, CHEN C Y. Z-complementary pairs with flexible lengths from generalized Boolean functions[J]. IEEE Communications Letters, 2020, 24(6):1183-1187. DOI:10.1109/LCOMM.2020.2981023. [70]GU Z, YANG Y, ZHOU Z C. New sets of even-length binary Z-complementary pairs[C]// 2019 Ninth International Workshop on Signal Design and its Applications in Communications(IWSDA). Piscataway, NJ:IEEE, 2019:1-5. DOI:10.1109/IWSDA46143.2019.8966113. [71]YU T, DU X N, LI L P, et al. Constructions of even-length Z-complementary pairs with large zero correlation zones[J]. IEEE Signal Processing Letters, 2021, 28:828-831. DOI:10.1109/LSP.2021.3055482. [72]KUMAR R, SARKAR P, SRIVASTAVA P K, et al. A direct construction of asymptotically optimal Type-II ZCP for every possible even length[J]. IEEE Signal Processing Letters, 2021, 28:1799-1782. DOI:10.1109/LSP.2021.3105927. [73]FENG L F, FAN P Z, TANG X H, et al. Generalized pairwise Z-complementary codes[J]. IEEE Signal Processing Letters, 2008, 15:377-380. DOI:10.1109/LSP.2008.919997. [74]FENG L F, FAN P Z, ZHOU X W. Lower bounds on correlation of Z-complementary code sets[J]. Wireless Personal Communications, 2013, 72(2):1475-1488. DOI:10.1007/s11277-013-1090-3. [75]ZENG F X, ZENG X P, ZHANG Z Y, et al. New construction method for quaternary aperiodic, periodic, and Z-complementary sequence sets[J]. Journal of Communications and Networks, 2012, 14(3):230-236. DOI:10.1109/JCN.2012.6253082. [76]LI X D, FAN P Z, TANG X H, et al. Quadriphase Z-complementary sequences[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2010, E93-A(11):2251-2257. DOI:10.1587/TRANSFUN.E93.A.2251. [77]ADHIKARY A R, MAJHI S.New construction of optimal aperiodic Z-complementary sequence sets of odd-lengths[J]. Electronics Letters, 2019, 55(19):1043-1045. DOI:10.1049/el.2019.1828. [78]李玉博, 许成谦, 刘凯. 一类四元零相关区非周期互补序列集构造法[J]. 电子学报, 2015, 43(9):1800-1804. DOI:10.3969/j.issn.0372-2112.2015.09.018. [79]LI Y B, SUN J A, XU C Q, et al. Constructions of optimal zero correlation zone aperiodic complementary sequence sets[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2017, E100-A(3):908-912. DOI:10.1587/transfun.E100.A.908. [80]LI Y B, XU C Q. ZCZ aperiodic complementary sequence sets with low column sequence PMEPR[J]. IEEE Communications Letters, 2015, 19(8):1303-1306. DOI:10.1109/LCOMM.2015.2446473. [81]李玉博, 田立影. 基于正交矩阵构造非周期组间互补序列集[J]. 电子与信息学报, 2018, 40(8):2028-2032. DOI:10.11999/JEIT171005. [82]CHEN X Y, LI G M, LI H C. Two constructions of zero correlation zone aperiodic complementary sequence sets[J]. IET Communications, 2020, 14(4):556-560. DOI:10.1049/iet-com.2019.0599. [83]陈晓玉, 苏荷茹, 高茜超. 一类最优的零相关区非周期互补序列集构造法[J]. 电子与信息学报, 2021, 43(2):461-466. DOI:10.11999/JEIT190703. [84]崔莉, 许成谦. 两类最优零相关区非周期互补序列集的构造[J]. 电子与信息学报:2022,44(12):4304-4311. DOI:10.11999/JEIT210950. [85]WU S W, CHEN C. Optimal Z-complementary sequence sets with good peak-to-average power-ratio property[J]. IEEE Signal Processing Letters, 2018, 25(20):1500-1504. DOI:10.1109/LSP.2018.2864705. [86]WU S W, AHIN A, HUANG Z M, et al. Z-complementary code sets with flexible lengths from generalized Boolean functions[J]. IEEE Access, 2021, 9:4642-4652. DOI:10.1109/ACCESS.2020.3047955. [87]SARKAR P, MAJHI S, LIU Z L. Optimal Z-complementary code set from generalized Reed-Muller codes[J]. IEEE Transactions on Communications, 2019, 67(3):1783-1796. DOI:10.1109/TCOMM.2018. 2883469. [88]SARKAR P, ROY A, MAJHI S. Construction of Z-complementary code sets with non-power-of-two lengths based on generalized Boolean functions[J]. IEEE Communications Letters, 2020, 24(8):1607-1611. DOI:10.1109/LCOMM.2020.2987625. [89]SARKAR P, MAJHI S. A direct construction of optimal ZCCS with maximum column sequence PMEPR two for MC-CDMA system[J]. IEEE Communications Letters, 2021, 25(2):337-341. DOI:10.1109/LCOMM.2020.3029204. [90]SARKAR P, MAJHI S, LIU Z L. Pseudo-Boolean functions for optimal Z-complementary code sets with flexible lengths[J]. IEEE Signal Processing Letters, 2021, 28:1350-1354. DOI:10.1109/LSP.2021.3091886. [91]SHEN B S, YANG Y, ZHOU Z C. New constructions of Z-complementary code sets and mutually orthogonal complementary sequence sets[EB/OL].(2021-05-21)[2022-07-18].https://arxiv.org/abs/2105.10147. DOI:10.48550/arXiv.2105.10147. |
[1] | 武康康, 周鹏, 陆叶, 蒋丹, 闫江鸿, 钱正成, 龚闯. 基于小批量梯度下降法的FIR滤波器[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 9-20. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |