广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (1): 17-23.doi: 10.16088/j.issn.1001-6600.2022061703

• 综述 • 上一篇    下一篇

三类区域上的Logistic扩散问题及其分析

张梦芸1, 葛静2, 林支桂3*   

  1. 1.南京财经大学应用数学学院, 江苏 南京 210003;
    2.淮阴师范学院数学与统计学院, 江苏 淮安 223300;
    3.扬州大学数学科学学院, 江苏 扬州 225002
  • 收稿日期:2022-06-17 修回日期:2022-07-18 出版日期:2023-01-25 发布日期:2023-03-07
  • 通讯作者: 林支桂(1965—),男,江苏兴化人,扬州大学教授,博导。E-mail:zglin@yzu.edu.cn
  • 基金资助:
    国家自然科学基金 (12271470, 11701206, 12101301, 11911540464)

Logistic Diffusion Problem and Its Analysis on Three Types of Domains

ZHANG Mengyun1, GE Jing2, LIN Zhigui3*   

  1. 1. School of Applied Mathematics, Nanjing University of Finance Economics, Nanjing Jiangsu 210003, China;
    2. School of Mathematics and Statistics, Huaiyin Normal University, Huaian Jiangsu 223300, China;
    3. School of Mathematical Science, Yangzhou University, Yangzhou Jiangsu 225002, China
  • Received:2022-06-17 Revised:2022-07-18 Online:2023-01-25 Published:2023-03-07

摘要: 本文介绍几类不同区域上的反应扩散问题, 这些问题描述了种群的空间扩张现象。对比经典的Cauchy问题,本文给出固定区域、演化区域和自由边界上的扩散问题, 根据相应问题的理论结果, 分析不同区域上扩散的区别和联系。

关键词: 反应扩散, 自由边界, 演化区域, 扩张和灭绝

Abstract: Reaction-diffusion problems in several different types of domains are investigated in this paper, which describes spatial expansion of population. Compared with the classical Cauchy problem, diffusion problems are presented in fixed domains, evolving domains and free boundaries. According to the theoretical results of the corresponding problems, the differences and connections of diffusion in different domains are analyzed.

Key words: reaction-diffusion, free boundary, evolving domain, expansion and extinction

中图分类号: 

  • O29
[1] 陈兰荪, 宋新宇, 陆征一. 数学生态学模型与研究方法[M]. 成都:四川科学技术出版社, 2003.
[2]MALTHUS T R. An essay on the principle of population[M]. London: J. Johnson, 1798.
[3]VERHULST P F. Notice sur la loi que la population suit dans son accroissement[J]. Correspondence Mathematique et Physique (Ghent), 1838,10: 113-121.
[4]CANTRELL R S, COSNER C. Spatial ecology via reaction-diffusion equations[M]. Chichester, UK: John Wiley and Sons Ltd., 2003.
[5]叶其孝, 李正元, 王明新, 等. 反应扩散方程引论[M]. 2版.北京: 科学出版社, 2011.
[6]林支桂. 数学生态学导引[M].北京: 科学出版社, 2013.
[7]FISHER R A. The wave of advance of advantageous genes[J]. Annals of Eugenics, 1937, 7: 335-369.
[8]KOLMOGOROV A N, PETROVSKI I G, PISKUNOV N S. A study of the equation of diffusion with increase in the quantity of matter, and its application on a biological problem[J]. Moscow University Bulletin of Mathematics, 1937, 1: 1-25.
[9]ARONSON D G, WEINBERGER H F. Nonlinear diffusion in population genetics, combustion, and nerve pulse propgation[J]. Lecture Notes in Mathematics, 1975, 446: 5-49.
[10]ARONSON D G, WEINBERGER H F. Multidimensional nonlinear diffusion arising in population genetics[J]. Advances in Mathematics, 1978, 30(1):33-76.
[11]KOT M. Elements of mathematical ecology[M]. Cambridge: Cambridge University Press, 2001:282.
[12]HUTSON V, LPEZ-GMEZ J, MISCHAIKOW K, et al. Limit behaviour for a competing species problem with diffusion[M]// AGARWAL R P. Dynamical systems and applications. Singapore: World Scientific, 1995: 343-358.
[13]DOCKERY J, HUTSON V, MISCHAIKOW K, et al. The evolution of slow dispersal rates: a reaction diffusion model[J]. Journal of Mathematical Biology, 1998, 37(1): 61-83.
[14]GAUSE G F. The struggle for existence[M]. Baltimore: Williams and Wilkins, 1934.
[15]HARDIN G. The competitive exclusion principle[J]. Science, 1960, 131(3409): 1292-1297.
[16]楼元. 空间生态学中的一些反应扩散方程模型[J]. 中国科学: 数学, 2015, 45(10): 1619-1634.
[17]闫宝强, 程红梅, 房钦贺, 等. 反应扩散方程及其应用研究进展[J]. 山东师范大学学报(自然科学版). 2021, 36(3): 253-266.
[18]ALLEN L J S, BOLKER B M, LOU Y, et al. Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model[J]. Discrete and Continuous Dynamical Systems, 2008, 21(1):1-20.
[19]DU Y H, LIN Z G. Spreading-vanishing dichotomy in the diffusion logistic model with a free boundary[J]. SIAM Journal on Mathematical Analysis, 2010, 42(1): 377-405.
[20]GU H, LOU B D, ZHOU M L. Long time behavior of solutions of Fisher-KPP equation with advection and free boundaries[J]. Journal of Functional Analysis, 2015, 269(6): 1714-1768.
[21]KANEKO Y. Spreading and vanishing behaviors for radially symmetric solutions of free boundary problems for reaction-diffusion equations[J]. Nonlinear Analysis: Real World Applications, 2014,18: 121-140.
[22]DU Y H, LIN Z G. The diffusive competition model with a free boundary: invasion of a superior or inferior competitor[J]. Discrete and Continuous Dynamical Systems-B, 2014, 19(10): 3105-3132.
[23]WU C. H. The minimal habitat size for spreading in a weak competition system with two free boundaries[J]. Journal of Differential Equations, 2015, 259(3): 873-897.
[24]WANG M X, SHENG W J, ZHANG Y. Spreading and vanishing in a diffusive prey-predator model with variable intrinsic growth rate and free boundary[J]. Journal of Mathematical Analysis and Applications, 2016, 441(1): 309-329.
[25]WANG M X, ZHAO J F. A free boundary problem for the prey-predator model with double free boundaries[J]. Journal of Dynamics and Differential Equations, 2017, 29(3): 957-979.
[26]CHEN X F, FRIEDMAN A. A free boundary problem for an elliptic-hyperbolic system: an application to tumor growth[J]. SIAM Journal on Mathematical Analysis, 2003, 35(4): 974-986.
[27]SUN W L, CARABALLO T, HAN X Y, et al. A free boundary tumor model with time dependent nutritional supply[J]. Nonlinear Analysis: Real World Applications, 2020, 53: 103063.
[28]CHEN X F, FRIEDMAN A. A free boundary problem arising in a model of wound healing[J]. SIAM Journal on Mathematical Analysis, 2000, 32(4): 778-800.
[29]MERZ W, RYBKA P. A free boundary problem describing reaction-diffusion problems in chemical vapor infiltration of pyrolytic carbon[J]. Journal of Mathematical Analysis and Applications, 2004, 292(2): 571-588.
[30]RAO R R, BAER T A, NOBLE D R. Computationaluid mechanics for free and moving boundary problems[J]. International Journal for Numerical Methods in Fluids, 2012, 68(11): 1341-1342.
[31]LIANG J, HU B, JIANG L S. Optimal convergence rate of the binomial tree scheme for American options with jump diffusion and their free boundaries[J]. SIAM Journal on Financial Mathematics, 2010, 1(1): 30-65.
[32]DU Y H, GUO Z M. Spreading-vanishing dichotomy in a diffusive logistic model with a free boundary, II[J]. Journal of Differential Equations, 2011, 250(12): 4336-4366.
[33]DU Y H, GUO Z M. The stefan problem for the Fisher-KPP equation[J]. Journal of Differential Equations, 2012, 253(3): 996-1035.
[34]WANG M X. The diffusive logistic equation with a free boundary and sign-changing coefficient[J]. Journal of Differential Equations, 2015, 258(4): 1252-1266.
[35]ZHOU P, XIAO D M. The diffusive logistic model with a free boundary in heterogeneous environment[J]. Journal of Differential Equations, 2014, 256(6): 1927-1954.
[36]DU Y H, LOU B D. Spreading and vanishing in nonlinear diffusion problems with free boundaries[J]. Journal of the European Mathematical Society, 2015, 17(10): 2673-2724.
[37]DU Y H, MATSUAZAWA H, ZHOU M L. Sharp estimate to the spreading speed determined by nonlinear free boundary problems[J]. SIAM Journal on Mathematical Analysis, 2014, 46(1): 375-396.
[38]BAO W D, DU Y H, LIN Z G, et al. Free boundary models for mosquito range movement driven by climate warming[J]. Journal of Mathematical Biology, 2018, 76(4): 841-875.
[39]KONDO S, ASAI R. A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus[J]. Nature, 1995, 376(6543): 765-768.
[40]CRAMPIN E J, GAFNEY E A, MAINI P K. Reaction and diffusion on growing domains: scenarios for robust pattern formation[J]. Bulletin of Mathematical Biology, 1999, 61(6): 1093-1120.
[41]VAREA C, ARAGN J L, BARRIO R. Turing patterns on a sphere[J]. Physical Review E, 1999, 60(4): 4588-4592.
[42]PLAZA R G, SNCHEZ-GARDUO F, PADILLA P, et al. The effect of growth and curvature on pattern formation[J]. Journal of Dynamics and Differential Equations, 2004, 16(4): 1093-1121.
[43]MADZVAMUSE A. Time-stepping schemes for moving grid finite elements applied to reaction-diffusion systems on fixed and growing domains[J]. Journal of Computational Physics, 2006, 214(1): 239-263.
[44]MADZVAMUSE A, GAFNEY E A, MAINI P K. Stability analysis of non-autonomous reaction-diffusion systems: the effects of growing domains[J]. Journal of Mathematical Biology, 2010, 61(1): 133-164.
[45]TANG Q L, ZHANG L, LIN Z G. Asymptotic profile of species migrating on a growing habitat[J]. Acta Applicandae Mathematicae, 2011, 116(2): 227.
[46]JIANG D H, WANG Z C. The diffusive logistic equation on periodically evolving domains[J]. Journal of Mathematical Analysis and Applications, 2018, 458(1): 93-111.
[1] 张杰, 李晓军. 无界域上非自治随机反应扩散方程一致随机吸引子的存在性[J]. 广西师范大学学报(自然科学版), 2020, 38(2): 134-143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘国伦, 宋树祥, 岑明灿, 李桂琴, 谢丽娜. 带宽可调带阻滤波器的设计[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 1 -8 .
[2] 呼文军,马忠军,马梅. 领导—跟随多智能体系统在分布式自适应控制下的滞后一致性[J]. 广西师范大学学报(自然科学版), 2018, 36(1): 70 -75 .
[3] 李谊纯, 董德信, 王一兵. 北仑河口及其邻近海域物质输运滞留时间研究[J]. 广西师范大学学报(自然科学版), 2015, 33(2): 56 -63 .
[4] 徐久成, 李晓艳, 李双群, 张灵均. 基于相容粒的多层次纹理特征图像检索方法[J]. 广西师范大学学报(自然科学版), 2011, 29(1): 186 -187 .
[5] 赵明, 牛亚兰, 钟金秀, 梁凤军, 罗茳升, 郑木华. 网络的平均度对复杂网络上动力学行为的影响[J]. 广西师范大学学报(自然科学版), 2012, 30(3): 88 -93 .
[6] 周善义. 中国蚂蚁分类学研究进展[J]. 广西师范大学学报(自然科学版), 2012, 30(3): 244 -251 .
[7] 许伦辉,黄宝山,钟海兴. AGV系统路径规划时间窗模型及算法[J]. 广西师范大学学报(自然科学版), 2019, 37(3): 1 -8 .
[8] 曾卫, 龙永才, 高歌, 李万德, 胡远芳, 李雪竹, 王羽丰, 邵施苗, 罗旭. 云南古林箐自然保护区的鸟类多样性[J]. 广西师范大学学报(自然科学版), 2020, 38(4): 113 -123 .
[9] 郑涛, 周欣然, 张龙. 三种群捕食-竞争-合作混杂模型的全局渐近稳定性[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 64 -70 .
[10] 杨州, 范意兴, 朱小飞, 郭嘉丰, 王越. 神经信息检索模型建模因素综述[J]. 广西师范大学学报(自然科学版), 2021, 39(2): 1 -12 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发