|
广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (1): 17-23.doi: 10.16088/j.issn.1001-6600.2022061703
张梦芸1, 葛静2, 林支桂3*
ZHANG Mengyun1, GE Jing2, LIN Zhigui3*
摘要: 本文介绍几类不同区域上的反应扩散问题, 这些问题描述了种群的空间扩张现象。对比经典的Cauchy问题,本文给出固定区域、演化区域和自由边界上的扩散问题, 根据相应问题的理论结果, 分析不同区域上扩散的区别和联系。
中图分类号:
[1] 陈兰荪, 宋新宇, 陆征一. 数学生态学模型与研究方法[M]. 成都:四川科学技术出版社, 2003. [2]MALTHUS T R. An essay on the principle of population[M]. London: J. Johnson, 1798. [3]VERHULST P F. Notice sur la loi que la population suit dans son accroissement[J]. Correspondence Mathematique et Physique (Ghent), 1838,10: 113-121. [4]CANTRELL R S, COSNER C. Spatial ecology via reaction-diffusion equations[M]. Chichester, UK: John Wiley and Sons Ltd., 2003. [5]叶其孝, 李正元, 王明新, 等. 反应扩散方程引论[M]. 2版.北京: 科学出版社, 2011. [6]林支桂. 数学生态学导引[M].北京: 科学出版社, 2013. [7]FISHER R A. The wave of advance of advantageous genes[J]. Annals of Eugenics, 1937, 7: 335-369. [8]KOLMOGOROV A N, PETROVSKI I G, PISKUNOV N S. A study of the equation of diffusion with increase in the quantity of matter, and its application on a biological problem[J]. Moscow University Bulletin of Mathematics, 1937, 1: 1-25. [9]ARONSON D G, WEINBERGER H F. Nonlinear diffusion in population genetics, combustion, and nerve pulse propgation[J]. Lecture Notes in Mathematics, 1975, 446: 5-49. [10]ARONSON D G, WEINBERGER H F. Multidimensional nonlinear diffusion arising in population genetics[J]. Advances in Mathematics, 1978, 30(1):33-76. [11]KOT M. Elements of mathematical ecology[M]. Cambridge: Cambridge University Press, 2001:282. [12]HUTSON V, LPEZ-GMEZ J, MISCHAIKOW K, et al. Limit behaviour for a competing species problem with diffusion[M]// AGARWAL R P. Dynamical systems and applications. Singapore: World Scientific, 1995: 343-358. [13]DOCKERY J, HUTSON V, MISCHAIKOW K, et al. The evolution of slow dispersal rates: a reaction diffusion model[J]. Journal of Mathematical Biology, 1998, 37(1): 61-83. [14]GAUSE G F. The struggle for existence[M]. Baltimore: Williams and Wilkins, 1934. [15]HARDIN G. The competitive exclusion principle[J]. Science, 1960, 131(3409): 1292-1297. [16]楼元. 空间生态学中的一些反应扩散方程模型[J]. 中国科学: 数学, 2015, 45(10): 1619-1634. [17]闫宝强, 程红梅, 房钦贺, 等. 反应扩散方程及其应用研究进展[J]. 山东师范大学学报(自然科学版). 2021, 36(3): 253-266. [18]ALLEN L J S, BOLKER B M, LOU Y, et al. Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model[J]. Discrete and Continuous Dynamical Systems, 2008, 21(1):1-20. [19]DU Y H, LIN Z G. Spreading-vanishing dichotomy in the diffusion logistic model with a free boundary[J]. SIAM Journal on Mathematical Analysis, 2010, 42(1): 377-405. [20]GU H, LOU B D, ZHOU M L. Long time behavior of solutions of Fisher-KPP equation with advection and free boundaries[J]. Journal of Functional Analysis, 2015, 269(6): 1714-1768. [21]KANEKO Y. Spreading and vanishing behaviors for radially symmetric solutions of free boundary problems for reaction-diffusion equations[J]. Nonlinear Analysis: Real World Applications, 2014,18: 121-140. [22]DU Y H, LIN Z G. The diffusive competition model with a free boundary: invasion of a superior or inferior competitor[J]. Discrete and Continuous Dynamical Systems-B, 2014, 19(10): 3105-3132. [23]WU C. H. The minimal habitat size for spreading in a weak competition system with two free boundaries[J]. Journal of Differential Equations, 2015, 259(3): 873-897. [24]WANG M X, SHENG W J, ZHANG Y. Spreading and vanishing in a diffusive prey-predator model with variable intrinsic growth rate and free boundary[J]. Journal of Mathematical Analysis and Applications, 2016, 441(1): 309-329. [25]WANG M X, ZHAO J F. A free boundary problem for the prey-predator model with double free boundaries[J]. Journal of Dynamics and Differential Equations, 2017, 29(3): 957-979. [26]CHEN X F, FRIEDMAN A. A free boundary problem for an elliptic-hyperbolic system: an application to tumor growth[J]. SIAM Journal on Mathematical Analysis, 2003, 35(4): 974-986. [27]SUN W L, CARABALLO T, HAN X Y, et al. A free boundary tumor model with time dependent nutritional supply[J]. Nonlinear Analysis: Real World Applications, 2020, 53: 103063. [28]CHEN X F, FRIEDMAN A. A free boundary problem arising in a model of wound healing[J]. SIAM Journal on Mathematical Analysis, 2000, 32(4): 778-800. [29]MERZ W, RYBKA P. A free boundary problem describing reaction-diffusion problems in chemical vapor infiltration of pyrolytic carbon[J]. Journal of Mathematical Analysis and Applications, 2004, 292(2): 571-588. [30]RAO R R, BAER T A, NOBLE D R. Computationaluid mechanics for free and moving boundary problems[J]. International Journal for Numerical Methods in Fluids, 2012, 68(11): 1341-1342. [31]LIANG J, HU B, JIANG L S. Optimal convergence rate of the binomial tree scheme for American options with jump diffusion and their free boundaries[J]. SIAM Journal on Financial Mathematics, 2010, 1(1): 30-65. [32]DU Y H, GUO Z M. Spreading-vanishing dichotomy in a diffusive logistic model with a free boundary, II[J]. Journal of Differential Equations, 2011, 250(12): 4336-4366. [33]DU Y H, GUO Z M. The stefan problem for the Fisher-KPP equation[J]. Journal of Differential Equations, 2012, 253(3): 996-1035. [34]WANG M X. The diffusive logistic equation with a free boundary and sign-changing coefficient[J]. Journal of Differential Equations, 2015, 258(4): 1252-1266. [35]ZHOU P, XIAO D M. The diffusive logistic model with a free boundary in heterogeneous environment[J]. Journal of Differential Equations, 2014, 256(6): 1927-1954. [36]DU Y H, LOU B D. Spreading and vanishing in nonlinear diffusion problems with free boundaries[J]. Journal of the European Mathematical Society, 2015, 17(10): 2673-2724. [37]DU Y H, MATSUAZAWA H, ZHOU M L. Sharp estimate to the spreading speed determined by nonlinear free boundary problems[J]. SIAM Journal on Mathematical Analysis, 2014, 46(1): 375-396. [38]BAO W D, DU Y H, LIN Z G, et al. Free boundary models for mosquito range movement driven by climate warming[J]. Journal of Mathematical Biology, 2018, 76(4): 841-875. [39]KONDO S, ASAI R. A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus[J]. Nature, 1995, 376(6543): 765-768. [40]CRAMPIN E J, GAFNEY E A, MAINI P K. Reaction and diffusion on growing domains: scenarios for robust pattern formation[J]. Bulletin of Mathematical Biology, 1999, 61(6): 1093-1120. [41]VAREA C, ARAGN J L, BARRIO R. Turing patterns on a sphere[J]. Physical Review E, 1999, 60(4): 4588-4592. [42]PLAZA R G, SNCHEZ-GARDUO F, PADILLA P, et al. The effect of growth and curvature on pattern formation[J]. Journal of Dynamics and Differential Equations, 2004, 16(4): 1093-1121. [43]MADZVAMUSE A. Time-stepping schemes for moving grid finite elements applied to reaction-diffusion systems on fixed and growing domains[J]. Journal of Computational Physics, 2006, 214(1): 239-263. [44]MADZVAMUSE A, GAFNEY E A, MAINI P K. Stability analysis of non-autonomous reaction-diffusion systems: the effects of growing domains[J]. Journal of Mathematical Biology, 2010, 61(1): 133-164. [45]TANG Q L, ZHANG L, LIN Z G. Asymptotic profile of species migrating on a growing habitat[J]. Acta Applicandae Mathematicae, 2011, 116(2): 227. [46]JIANG D H, WANG Z C. The diffusive logistic equation on periodically evolving domains[J]. Journal of Mathematical Analysis and Applications, 2018, 458(1): 93-111. |
[1] | 张杰, 李晓军. 无界域上非自治随机反应扩散方程一致随机吸引子的存在性[J]. 广西师范大学学报(自然科学版), 2020, 38(2): 134-143. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |