|
广西师范大学学报(自然科学版) ›› 2022, Vol. 40 ›› Issue (2): 242-250.doi: 10.16088/j.issn.1001-6600.2020110901
• • 上一篇
孙悦1,2,3, 戴求仲2,4, 蒋桂韬2,4, 黄璇2,4, 李闯2,4, 邓萍2,4, 孙涛1,3*
SUN Yue1,2,3, DAI Qiuzhong2,4, JIANG Guitao2,4, HUANG Xuan2,4, LI Chuang2,4, DENG Ping2,4, SUN Tao1,3*
摘要: 本文旨在研究不同比例支链氨基酸(BCAAs)对28~63日龄攸县麻鸭盲肠微生物菌群的影响。采用单因子设计,选用28日龄健康、体质量相近的攸县麻鸭504羽,随机分为6个处理,每处理6个重复,每重复14羽,分别饲喂不同比例支链氨基酸(BCAAs)饲粮。其中BCAAs饲粮中亮氨酸、缬氨酸、异亮氨酸按质量比m(Leu)∶m(Val)∶m(Ile)分为1∶0.4∶0.3(MA组)、1∶0.5∶0.4(MB组)、1∶0.6∶0.5(MC组)、1∶0.7∶0.6(MD组)、1∶0.8∶0.7(ME组)和1∶0.9∶0.8(MF组)共6组。试验期35 d,试验结束当天,分别从每重复中选择1羽试鸭采集盲肠内容物,利用16S rDNA测序技术分析盲肠微生物结构和菌群多样性。结果显示:1)6个组共有的OTU数目344,仅MD组存在1个特有的OTU。2)在门水平上,核心菌群是拟杆菌门Bacteroidetes、厚壁菌门Firmicute和变形菌门Proteobacteria;在属水平上,拟杆菌属Bacteroides和脱硫弧菌属Desulfovibrio为优势菌属。3)6组比较发现,MD组变形菌门丰度显著高于ME组(P<0.05),MF组放线菌门丰度显著高于MA组(P<0.05)。4)6个试验组间Ace指数和Chao1指数的差异不显著,MF组的Shannon指数显著大于MC组(P<0.05),MC组的Simpson指数极显著大于MF组(P<0.01)和显著大于MA组(P<0.05)。综上,63日龄攸县麻鸭盲肠的核心菌群是拟杆菌门、厚壁菌门、变形菌门,饲粮BCAAs比例显著影响变形菌门及放线菌门,当m(Leu)∶m(Val)∶m(Ile)=1∶0.9∶0.8时,攸县麻鸭盲肠微生物物种多样性最高。
中图分类号:
[1] 朱丽慧, 廖荣荣, 杨长锁. 肠道微生物对家禽肠道免疫功能的调节作用及其机制[J]. 动物营养学报, 2018, 30(3): 820-828. DOI: 10.3969/j.issn.1006-267x.2018.03.003. [2] 卢明, 刘蔷, 刘婧, 等. 肠道微生物菌群分型的研究进展[J]. 中国微生态学杂志, 2020, 32(3): 345-351. DOI: 10.13381/j.cnki.cjm.202003023. [3] 王珊珊, 王佳堃, 刘建新. 肠道微生物对宿主免疫系统的调节及其可能机制[J]. 动物营养学报, 2015, 27(2): 375-382. DOI: 10.3969/j.issn.1006-267x.2015.02.007. [4] 杨利娜, 边高瑞, 朱伟云. 单胃动物肠道微生物菌群与肠道免疫功能的相互作用[J]. 微生物学报, 2014, 54(5): 480-486. DOI: 10.13343/j.cnki.wsxb.2014.05.002. [5] SEKIROV I, RUSSELL S L, ANTUNES L C M, et al. Gut microbiota in health and disease[J]. Physiological Reviews, 2010, 90(3): 859-904. DOI: 10.1152/physrev.00045.2009. [6] 王文娟, 孙笑非, 孙冬岩, 等. 家禽肠道菌群多样性及其调控机制研究进展[J]. 饲料研究, 2015(5): 24-26, 68. DOI: 10.13557/j.cnki.issn1002-2813.2015.05.007. [7] ZULKIFLI I, SHAKERI M, SOLEIMANI A F. Dietary supplementation of L-glutamine and L-glutamate in broiler chicks subjected to delayed placement[J]. Poultry Science, 2016, 95(12) : 2757-2763. DOI: 10.3382/ps/pew267. [8] DONG X Y, AZZAM M M M, ZOU X T. Effects of dietary threonine supplementation on intestinal barrier function and gut microbiota of laying hens[J]. Poultry Science, 2017, 96(10) : 3654-3663. DOI: 10.3382/ps/pex185. [9] NIE C X, HE T, ZHANG W J, et al. Branched chain amino acids: beyond nutrition metabolism[J]. International Journal of Molecular Sciences, 2018, 19(4): 954. DOI: 10.3390/ijms19040954. [10] SIDDIK M A B, SHIN A C. Recent progress on branched-chain amino acids in obesity, diabetes, and beyond[J]. Endocrinology and Metabolism, 2019, 34(3): 234-246. DOI: 10.3803/EnM.2019.34.3.234. [11] ADEVA-ANDANY M M, LÓOPEZ-MASIDE L, DONAPETRY-GARCÍA C, et al. Enzymes involved in branched-chain amino acid metabolism in humans[J]. Amino Acids, 2017, 49(6): 1005-1028. DOI: 10.1007/s00726-017-2412-7. [12] NEINAST M, MURASHIGE D, ARANY Z, et al. Branched chain amino acids[J]. Annual Review of Physiology, 2019, 81(1): 139-164. DOI: 10.1146/annurev-physiol-020518-114455. [13] LUO J B, FENG L, JIANG W D, et al. The impaired intestinal mucosal immune system by valine deficiency for young grass carp (Ctenopharyngodon idella) is associated with decreasing immune status and regulating tight junction proteins transcript abundance in the intestine[J]. Fish & Shellfish Immunology, 2014, 40(1): 197-207. DOI: 10.1016/j.fsi.2014.07.003. [14] REN M, LIU C, ZENG X F, et al. Amino acids modulates the intestinal proteome associated with immune and stress response in weaning pig[J]. Molecular Biology Reports, 2014, 41(6): 3611-3620. DOI: 10.1007/s11033-014-3225-3. [15] CHANGY L, CAI H Y, LIU G H, et al. Effects of dietary leucine supplementation on the gene expression of mammalian target of rapamycin signaling pathway and intestinal development of broilers[J]. Animal Nutrition, 2015, 1(4): 313-319. DOI: 10.1016/j.aninu.2015.11.005. [16] SUNY L, WU Z L, LI W, et al. Dietary L-leucine supplementation enhances intestinal development in suckling piglets[J]. Amino Acids, 2015, 47(8): 1517-1525. DOI: 10.1007/s00726-015-1985-2. [17] YANG Z, HUANG S M, ZOU D Y, et al. Metabolic shifts and structural changes in the gut microbiota upon branched-chain amino acid supplementation in middle-aged mice[J]. Amino Acids, 2016, 48(12): 2731-2745. DOI: 10.1007/s00726-016-2308-y. [18] Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome[J]. Nature, 2012, 486(7402): 207-214. DOI: 10.1038/nature11234. [19] WELDON L, ABOLINS S, LENZI L, et al. The gut microbiota of wild mice[J]. PLoS One, 2015, 10(8): e0134643. DOI: 10.1371/journal.pone.0134643. [20] DURSO L M, HARHAY G P, SMITH T P L, et al. Animal-to-animal variation in fecal microbial diversity among beef cattle[J]. Applied and Environmental Microbiology, 2010, 76(14) : 4858-4862. DOI: 10.1128/AEM.00207-10. [21] CHOI J H, KIM G B, CHA C J. Spatial heterogeneity and stability of bacterial community in the gastrointestinal tracts of broiler chickens[J]. Poultry Science, 2014, 93(8): 1942-1950. DOI: 10.3382/ps.2014-03974. [22] DAI Z L, ZHANG J, WU G Y, et al. Utilization of amino acids by bacteria from the pig small intestine[J]. Amino Acids, 2010, 39(5): 1201-1215. DOI: 10.1007/s00726-010-0556-9. [23] ZHANG S H, QIAO S Y, REN M, et al. Supplementation with branched-chain amino acids to a low-protein diet regulates intestinal expression of amino acid and peptide transporters in weanling pigs[J]. Amino Acids, 2013, 45(5): 1191-1205. DOI: 10.1007/s00726-013-1577-y. [24] DAI Z L, LI X L, XI P B, et al. Metabolism of select amino acids in bacteria from the pig small intestine[J]. Amino Acids, 2012, 42(5): 1597-1608. DOI: 10.1007/s00726-011-0846-x. [25] YIN J, MA J, LI Y Y, et al. Branched-chain amino acids, especially of leucine and valine, mediate the protein restricted response in a piglet model[J]. Food & Function, 2020, 11(2): 1304-1311. DOI: 10.1039/c9fo01757g. [26] ZHAO J, FENG L, LIU Y, et al. Effect of dietary isoleucine on the immunity, antioxidant status, tight junctions and microflora in the intestine of juvenile jian carp (Cyprinus carpio var. Jian) [J]. Fish & Shellfish Immunology, 2014, 41(2): 663-673. DOI: 10.1016/j.fsi.2014.10.002. |
[1] | 师瑞丹, 吴志强, 黄亮亮, 封文利, 朱召军, 丁洋, 胡祎祥. 湘江上游区桂北江段鱼类物种多样性研究[J]. 广西师范大学学报(自然科学版), 2015, 33(4): 127-136. |
[2] | 侯满福, 沈庆庚, 覃海宁. 贵州茂兰喀斯特原生性森林群落物种多样性特征[J]. 广西师范大学学报(自然科学版), 2011, 29(1): 60-65. |
[3] | 李高岩, 韩松霖, 梁士楚, 宛玉剑, 文泉营, 韩耀全. 漓江光倒刺鱼巴金线鱼巴保护区鱼类资源现状调查[J]. 广西师范大学学报(自然科学版), 2011, 29(1): 66-71. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |