广西师范大学学报(自然科学版) ›› 2022, Vol. 40 ›› Issue (2): 242-250.doi: 10.16088/j.issn.1001-6600.2020110901

• • 上一篇    

饲粮支链氨基酸比例对28~63日龄攸县麻鸭肠道菌群的影响

孙悦1,2,3, 戴求仲2,4, 蒋桂韬2,4, 黄璇2,4, 李闯2,4, 邓萍2,4, 孙涛1,3*   

  1. 1.广西师范大学 生命科学学院,广西 桂林 541006;
    2.湖南省畜牧兽医研究所,湖南 长沙 410131;
    3.珍稀濒危动植物生态与环境保护教育部重点实验室(广西师范大学),广西 桂林 541006;
    4.湖南省家禽安全生产工程技术研究中心, 湖南 长沙 410128
  • 收稿日期:2020-11-09 修回日期:2021-04-02 发布日期:2022-05-31
  • 通讯作者: 孙涛(1984—),女,河北唐山人,广西师范大学讲师,硕士。E-mail:suntao9658@126.com
  • 基金资助:
    国家现代农业产业技术体系建设专项资金(CARS-42-21)

Effect of Dietary Branched-chain Amino Acid Ratio on Intestinal Flora of 28-63 Days Old Youxian Duck

SUN Yue1,2,3, DAI Qiuzhong2,4, JIANG Guitao2,4, HUANG Xuan2,4, LI Chuang2,4, DENG Ping2,4, SUN Tao1,3*   

  1. 1. College of Life Science, Guangxi Normal University, Guilin Guangxi 541006, China;
    2. Hunan Institute of Animal Science and Veterinary Medicine, Changsha Hunan 410131, China;
    3. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    4. Hunan Engineering Research Center of Poultry Production Safety, Changsha Hunan 410128, China
  • Received:2020-11-09 Revised:2021-04-02 Published:2022-05-31

摘要: 本文旨在研究不同比例支链氨基酸(BCAAs)对28~63日龄攸县麻鸭盲肠微生物菌群的影响。采用单因子设计,选用28日龄健康、体质量相近的攸县麻鸭504羽,随机分为6个处理,每处理6个重复,每重复14羽,分别饲喂不同比例支链氨基酸(BCAAs)饲粮。其中BCAAs饲粮中亮氨酸、缬氨酸、异亮氨酸按质量比m(Leu)∶m(Val)∶m(Ile)分为1∶0.4∶0.3(MA组)、1∶0.5∶0.4(MB组)、1∶0.6∶0.5(MC组)、1∶0.7∶0.6(MD组)、1∶0.8∶0.7(ME组)和1∶0.9∶0.8(MF组)共6组。试验期35 d,试验结束当天,分别从每重复中选择1羽试鸭采集盲肠内容物,利用16S rDNA测序技术分析盲肠微生物结构和菌群多样性。结果显示:1)6个组共有的OTU数目344,仅MD组存在1个特有的OTU。2)在门水平上,核心菌群是拟杆菌门Bacteroidetes、厚壁菌门Firmicute和变形菌门Proteobacteria;在属水平上,拟杆菌属Bacteroides和脱硫弧菌属Desulfovibrio为优势菌属。3)6组比较发现,MD组变形菌门丰度显著高于ME组(P<0.05),MF组放线菌门丰度显著高于MA组(P<0.05)。4)6个试验组间Ace指数和Chao1指数的差异不显著,MF组的Shannon指数显著大于MC组(P<0.05),MC组的Simpson指数极显著大于MF组(P<0.01)和显著大于MA组(P<0.05)。综上,63日龄攸县麻鸭盲肠的核心菌群是拟杆菌门、厚壁菌门、变形菌门,饲粮BCAAs比例显著影响变形菌门及放线菌门,当m(Leu)∶m(Val)∶m(Ile)=1∶0.9∶0.8时,攸县麻鸭盲肠微生物物种多样性最高。

关键词: 支链氨基酸, 攸县麻鸭, 肠道菌群, 物种丰度, 物种多样性

Abstract: A single factor experiment was adopted to investigate the effects of dietary branched-chain Amino Acid ratio flora of 28-63 days old Youxian duck. 504 Youxian ducks of 28 day-old and healthy and similar in weight were randomly allocated to 6 groups with 6 replicates each group and 14 in each replicate. Six diets with leucine, valine and isoleucine ratios of 1∶0.4∶0.3 (group MA), 1∶0.5∶0.4 (group MB), 1∶0.6∶0.5 (group MC), 1∶0.7∶0.6(group MD), 1∶0.8∶0.7(group ME) and 1∶0.9∶0.8 (group MF) were avilable. The experiment lasted for 35 days. At the end of the feeding experiment, one duck was selected from each replicate of each treatment to collect cecal contents, and the cecal microbial structure and flora diversity were detected and analyzed by 16S rDNA sequencing technology. The results show that: 1) There are 344 identical OTUs in the 6 groups, and only one unique OTU existed in group MD. 2) At the phylum level, the core flora are Bacteroidetes, Firmicutes and Proteobacteria. At the genus level, Bacteroides and Desulfovibrio are the dominant genera; 3) The results of comparion among the 6 groups show that, the abundance of Proteobacteria in group MD is significantly higher than that in group ME (P<0.05), and the abundance of Actinomycetes in group MF is significantly higher than that in group MA (P<0.05); 4)There is no significant difference in Ace index and Chao1 index among the 6 groups, however, the Shannon index in group MF is significantly higher than that in group MC (P<0.05), and Simpson index in group MC is significantly higher than that in group MF (P<0.01) and significantly higher than that in group MA (P<0.05). In summary, the core flora of the cecum of 63-day-old Youxian duck is Bacteroides, Firmicutes, and Proteobacteria. The proportion of branched-chain amino acids in diets significantly affects the Proteobacteria and Actinomycetes. When the ratio of mleucine, valine and isoleucine is 1∶0.9∶0.8, the microbial species diversity of the cecum in Youxian duck is the highest.

Key words: branched-chain amino acid, Youxian duck, intestinal flora, species abundance, species diversity

中图分类号: 

  • S834
[1] 朱丽慧, 廖荣荣, 杨长锁. 肠道微生物对家禽肠道免疫功能的调节作用及其机制[J]. 动物营养学报, 2018, 30(3): 820-828. DOI: 10.3969/j.issn.1006-267x.2018.03.003.
[2] 卢明, 刘蔷, 刘婧, 等. 肠道微生物菌群分型的研究进展[J]. 中国微生态学杂志, 2020, 32(3): 345-351. DOI: 10.13381/j.cnki.cjm.202003023.
[3] 王珊珊, 王佳堃, 刘建新. 肠道微生物对宿主免疫系统的调节及其可能机制[J]. 动物营养学报, 2015, 27(2): 375-382. DOI: 10.3969/j.issn.1006-267x.2015.02.007.
[4] 杨利娜, 边高瑞, 朱伟云. 单胃动物肠道微生物菌群与肠道免疫功能的相互作用[J]. 微生物学报, 2014, 54(5): 480-486. DOI: 10.13343/j.cnki.wsxb.2014.05.002.
[5] SEKIROV I, RUSSELL S L, ANTUNES L C M, et al. Gut microbiota in health and disease[J]. Physiological Reviews, 2010, 90(3): 859-904. DOI: 10.1152/physrev.00045.2009.
[6] 王文娟, 孙笑非, 孙冬岩, 等. 家禽肠道菌群多样性及其调控机制研究进展[J]. 饲料研究, 2015(5): 24-26, 68. DOI: 10.13557/j.cnki.issn1002-2813.2015.05.007.
[7] ZULKIFLI I, SHAKERI M, SOLEIMANI A F. Dietary supplementation of L-glutamine and L-glutamate in broiler chicks subjected to delayed placement[J]. Poultry Science, 2016, 95(12) : 2757-2763. DOI: 10.3382/ps/pew267.
[8] DONG X Y, AZZAM M M M, ZOU X T. Effects of dietary threonine supplementation on intestinal barrier function and gut microbiota of laying hens[J]. Poultry Science, 2017, 96(10) : 3654-3663. DOI: 10.3382/ps/pex185.
[9] NIE C X, HE T, ZHANG W J, et al. Branched chain amino acids: beyond nutrition metabolism[J]. International Journal of Molecular Sciences, 2018, 19(4): 954. DOI: 10.3390/ijms19040954.
[10] SIDDIK M A B, SHIN A C. Recent progress on branched-chain amino acids in obesity, diabetes, and beyond[J]. Endocrinology and Metabolism, 2019, 34(3): 234-246. DOI: 10.3803/EnM.2019.34.3.234.
[11] ADEVA-ANDANY M M, LÓOPEZ-MASIDE L, DONAPETRY-GARCÍA C, et al. Enzymes involved in branched-chain amino acid metabolism in humans[J]. Amino Acids, 2017, 49(6): 1005-1028. DOI: 10.1007/s00726-017-2412-7.
[12] NEINAST M, MURASHIGE D, ARANY Z, et al. Branched chain amino acids[J]. Annual Review of Physiology, 2019, 81(1): 139-164. DOI: 10.1146/annurev-physiol-020518-114455.
[13] LUO J B, FENG L, JIANG W D, et al. The impaired intestinal mucosal immune system by valine deficiency for young grass carp (Ctenopharyngodon idella) is associated with decreasing immune status and regulating tight junction proteins transcript abundance in the intestine[J]. Fish & Shellfish Immunology, 2014, 40(1): 197-207. DOI: 10.1016/j.fsi.2014.07.003.
[14] REN M, LIU C, ZENG X F, et al. Amino acids modulates the intestinal proteome associated with immune and stress response in weaning pig[J]. Molecular Biology Reports, 2014, 41(6): 3611-3620. DOI: 10.1007/s11033-014-3225-3.
[15] CHANGY L, CAI H Y, LIU G H, et al. Effects of dietary leucine supplementation on the gene expression of mammalian target of rapamycin signaling pathway and intestinal development of broilers[J]. Animal Nutrition, 2015, 1(4): 313-319. DOI: 10.1016/j.aninu.2015.11.005.
[16] SUNY L, WU Z L, LI W, et al. Dietary L-leucine supplementation enhances intestinal development in suckling piglets[J]. Amino Acids, 2015, 47(8): 1517-1525. DOI: 10.1007/s00726-015-1985-2.
[17] YANG Z, HUANG S M, ZOU D Y, et al. Metabolic shifts and structural changes in the gut microbiota upon branched-chain amino acid supplementation in middle-aged mice[J]. Amino Acids, 2016, 48(12): 2731-2745. DOI: 10.1007/s00726-016-2308-y.
[18] Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome[J]. Nature, 2012, 486(7402): 207-214. DOI: 10.1038/nature11234.
[19] WELDON L, ABOLINS S, LENZI L, et al. The gut microbiota of wild mice[J]. PLoS One, 2015, 10(8): e0134643. DOI: 10.1371/journal.pone.0134643.
[20] DURSO L M, HARHAY G P, SMITH T P L, et al. Animal-to-animal variation in fecal microbial diversity among beef cattle[J]. Applied and Environmental Microbiology, 2010, 76(14) : 4858-4862. DOI: 10.1128/AEM.00207-10.
[21] CHOI J H, KIM G B, CHA C J. Spatial heterogeneity and stability of bacterial community in the gastrointestinal tracts of broiler chickens[J]. Poultry Science, 2014, 93(8): 1942-1950. DOI: 10.3382/ps.2014-03974.
[22] DAI Z L, ZHANG J, WU G Y, et al. Utilization of amino acids by bacteria from the pig small intestine[J]. Amino Acids, 2010, 39(5): 1201-1215. DOI: 10.1007/s00726-010-0556-9.
[23] ZHANG S H, QIAO S Y, REN M, et al. Supplementation with branched-chain amino acids to a low-protein diet regulates intestinal expression of amino acid and peptide transporters in weanling pigs[J]. Amino Acids, 2013, 45(5): 1191-1205. DOI: 10.1007/s00726-013-1577-y.
[24] DAI Z L, LI X L, XI P B, et al. Metabolism of select amino acids in bacteria from the pig small intestine[J]. Amino Acids, 2012, 42(5): 1597-1608. DOI: 10.1007/s00726-011-0846-x.
[25] YIN J, MA J, LI Y Y, et al. Branched-chain amino acids, especially of leucine and valine, mediate the protein restricted response in a piglet model[J]. Food & Function, 2020, 11(2): 1304-1311. DOI: 10.1039/c9fo01757g.
[26] ZHAO J, FENG L, LIU Y, et al. Effect of dietary isoleucine on the immunity, antioxidant status, tight junctions and microflora in the intestine of juvenile jian carp (Cyprinus carpio var. Jian) [J]. Fish & Shellfish Immunology, 2014, 41(2): 663-673. DOI: 10.1016/j.fsi.2014.10.002.
[1] 师瑞丹, 吴志强, 黄亮亮, 封文利, 朱召军, 丁洋, 胡祎祥. 湘江上游区桂北江段鱼类物种多样性研究[J]. 广西师范大学学报(自然科学版), 2015, 33(4): 127-136.
[2] 侯满福, 沈庆庚, 覃海宁. 贵州茂兰喀斯特原生性森林群落物种多样性特征[J]. 广西师范大学学报(自然科学版), 2011, 29(1): 60-65.
[3] 李高岩, 韩松霖, 梁士楚, 宛玉剑, 文泉营, 韩耀全. 漓江光倒刺鱼巴金线鱼巴保护区鱼类资源现状调查[J]. 广西师范大学学报(自然科学版), 2011, 29(1): 66-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 胡锦铭, 韦笃取. 不同阶次分数阶永磁同步电机的混合投影同步[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 1 -8 .
[2] 武康康, 周鹏, 陆叶, 蒋丹, 闫江鸿, 钱正成, 龚闯. 基于小批量梯度下降法的FIR滤波器[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 9 -20 .
[3] 刘东, 周莉, 郑晓亮. 基于SA-DBN的超短期电力负荷预测[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 21 -33 .
[4] 张伟彬, 吴军, 易见兵. 基于RFB网络的特征融合管制物品检测算法研究[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 34 -46 .
[5] 王金艳, 胡春, 高健. 一种面向知识编译的OBDD构造方法[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 47 -54 .
[6] 逯苗, 何登旭, 曲良东. 非线性参数的精英学习灰狼优化算法[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 55 -67 .
[7] 李莉丽, 张兴发, 李元, 邓春亮. 基于高频数据的日频GARCH模型估计[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 68 -78 .
[8] 李松涛, 李群宏, 张文. 三自由度碰撞振动系统的余维二擦边分岔与混沌控制[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 79 -92 .
[9] 赵红涛, 刘志伟. λ重完全二部3-一致超图λK(3)n,n分解为超图双三角锥[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 93 -98 .
[10] 李梦, 曹庆先 , 胡宝清. 1960—2018年广西大陆海岸线时空变迁分析[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 99 -108 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发