广西师范大学学报(自然科学版) ›› 2022, Vol. 40 ›› Issue (2): 103-115.doi: 10.16088/j.issn.1001-6600.2021052801

• • 上一篇    下一篇

一类具有迁移和Allee效应的食饵-捕食者系统稳定性

徐王军1, 曹进德2, 伍代勇1, 申传胜1*   

  1. 1.安庆师范大学 数理学院,安徽 安庆 246133;
    2.东南大学 数学学院,江苏 南京 211189
  • 收稿日期:2021-05-02 修回日期:2021-06-28 发布日期:2022-05-31
  • 通讯作者: 申传胜(1975—),男,安徽六安人,安庆师范大学教授,博士。E-mail:csshen@mail.ustc.edu.cn
  • 基金资助:
    国家自然科学基金(11975025);国家自然科学基金委员会与英国皇家学会合作交流项目(12011530158)

Stability of a Prey-predator Model with Migration and Allee Effects

XU Wangjun1, CAO Jinde2, WU Daiyong1, SHEN Chuansheng1*   

  1. 1. School of Mathematics and Physics, Anqing Normal University, Anqing Anhui 246133, China;
    2. School of Mathematics, Southeast University, Nanjing Jiangsu 211189, China
  • Received:2021-05-02 Revised:2021-06-28 Published:2022-05-31

摘要: 研究一类食饵具有Allee效应且捕食者具有人工控制迁移的食饵-捕食者系统,该系统具有平方根项的功能性反应函数。首先通过定性分析,证明解的有界性,分析平衡点的存在性,得到系统平衡点的局部稳定性的充分条件。接着讨论平衡点的Hopf 分岔存在性,并通过计算第一李雅普诺夫系数,研究平衡点Hopf 分岔的稳定性和方向。 最后通过数值模拟验证所得结论的正确性,结果表明Allee效应和人工控制迁移率对食饵种群和捕食者种群的生存与灭绝具有重要意义。

关键词: 食饵-捕食者模型, Allee效应, 迁移率, Hopf分岔, 稳定性

Abstract: A kind of prey-predator system with Allee effect and artificially controlled migration of predators is studied. The system has a square root functional response function. Firstly, by qualitative analysis of the model, the boundedness of the solution is proved, and the existence of the equilibrium point is analyzed. Sufficient conditions for the local stability of the equilibrium point of the system are obtained. Then, the existence of the Hopf-bifurcation of the equilibrium point is discussed, and the stability and direction of the equilibrium Hopf-bifurcation are studied by calculating the first Lyapunov coefficient. Finally, the correctness of the conclusion is verified by numerical simulation. The results indicate that the Allee effect and artificially controlled migration rate are important for the survival and extinction of prey and predator populations.

Key words: prey-predator model, Allee effect, migration rate, Hopf bifurcation, stability

中图分类号: 

  • Q141
[1] MA Z H, WANG S F, WANG T T, et al. Stability analysis of prey-predator system with Holling type functional response and prey refuge[J]. Advances in Difference Equations, 2017, 2017: 243.
[2] LIU B, ZHANG Y J, CHEN L S. Dynamic complexities of a Holling I predator-prey model concerning periodic biological and chemical control[J]. Chaos, Solitons & Fractals, 2004, 22(1): 123-134.
[3] ZHANG Y J, XU Z L, LIU B, et al. Dynamic analysis of a Holling I predator-prey system with mutual interference concerning pest control[J]. Journal of Biological Systems, 2005, 13(1): 45-58.
[4] ZU J, MIMURA M. The impact of Allee effect on a predator-prey system with Holling type II functional response[J]. Applied Mathematics and Computation, 2010, 217(7): 3542-3556.
[5] SUN G, SARWARDI S, PAL P J, et al. The spatial patterns through diffusion driven instability in modified Leslie-Gower and Holling-type II predator-prey model[J]. Journal of Biological Systems, 2010, 18(3): 593-603.
[6] YI F Q, WEI J J, SHI J P. Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system[J]. Journal of Differential Equations, 2009, 246(5): 1944-1977.
[7] FAN M, KUANG Y. Dynamics of a nonautonomous predator-prey system with the Beddington-DeAngelis functional response[J]. Journal of Mathematical Analysis and Applications, 2004, 295(1): 15-39.
[8] AJRALDI V, PITTAVINO M, VENTURINO E. Modeling herd behavior in population systems[J]. Nonlinear Analysis: Real World Applications, 2011, 12(4): 2319-2338.
[9] KOSOBUD R F, O'NEILL W D. On the dependence of population growth on income: New results in a ricardian-Malthus model[J]. De Economist, 1981, 129(2): 206-223.
[10] TSOULARIS A, WALLACE J. Analysis of logistic growth models[J]. Mathematical Biosciences, 2002, 179(1): 21-55.
[11] BOUKAL D S, SABELIS M W, BEREC L. How predator functional responses and Allee effects in prey affect the paradox of enrichment and population collapses[J]. Theoretical Population Biology, 2007, 72(1): 136-147.
[12] KRAMER A M, DENNIS B, LIEBHOLD A M, et al. The evidence for Allee effects[J]. Population Ecology, 2009, 51(3): 341-354.
[13] BEREC L, ANGULO E, COURCHAMP F. Multiple Allee effects and population management[J]. Trends in Ecology & Evolution, 2007, 22(4): 185-191.
[14] BISWAS S, SAIFUDDIN M, SASMAL S K, et al. A delayed prey-predator system with prey subject to the strong Allee effect and disease[J]. Nonlinear Dynamics, 2016, 84(3): 1569-1594.
[15] COURCHAMP F, BEREC L, GASCOIGNE J. Allee effects in ecology and conservation[J]. Environmental Conservation, 2008, 36(1): 80-85.
[16] WU D Y, ZHAO H Y. Complex dynamics of a discrete predator-prey model with the prey subject to the Allee effect[J]. Journal of Difference Equations Applications, 2017, 23(11): 1765-1806.
[17] PETROVSKII S, MOROZOV A, LI B L. Regimes of biological invasion in a predator-prey system with the Allee effect[J]. Bulletin of Mathematical Biology, 2005, 67(3): 637-661.
[18] RAO F, KANG Y. The complex dynamics of a diffusive prey-predator model with an Allee effect in prey[J]. Ecological Complexity, 2016, 28: 123-144.
[19] BARCLAY H J. Models for pest control using predator release, habitat management and pesticide release in combination[J]. Journal of Applied Ecology, 1982, 19(2): 337-348.
[20] TANG S Y, TANG G Y, CHEKE R A. Optimum timing for integrated pest management: Modelling rates of pesticide application and natural enemy releases[J]. Journal of Theoretical Biology, 2010, 264(2): 623-638.
[21] 成定平. 鼠类-天敌系统渐近稳定性的数学分析[J]. 生物数学学报, 2003, 18(3): 283-286.
[22] CHEN Y M, ZHANG F Q. Dynamics of a delayed predator-prey model with predator migration[J]. Applied Mathematical Modelling, 2013, 37(3): 1400-1412.
[23] JIN M, XU F, SHEN C S, et al. Nontrivial effect of time varying migration on the three species prey-predator system[J]. Communications in Theoretical Physics, 2019, 71(1): 127-131.
[24] ABDLLAOUI A E, AUGER P, KOOI B W, et al. Effects of density-dependent migrations on stability of a two-patch predator-prey model[J]. Mathematical Biosciences, 2007, 210(1): 335-354.
[25] HUANG Y, DIEKMANN O. Predator migration in response to prey density: What are the consequences?[J]. Journal of Mathematical Biology, 2001, 43(6): 561-581.
[26] SUN G Q, JIN Z, LIU Q X, et al. Dynamical complexity of a spatial predator-prey model with migration[J]. Ecological Modelling, 2008, 219(1/2): 248-255.
[27] PETROVSKII S, LI B L. An exactly solvable model of population dynamics with density-dependent migrations and the Allee effect[J]. Mathematical Biosciences, 2003, 186(1): 79-91.
[1] 阮文静, 杨启贵. 具有有限和无限孤立奇点的新四维超混沌系统的复杂动力学分析[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 173-181.
[2] 陈东, 胡葵. 覆盖Gorenstein AC-平坦维数[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 51-55.
[3] 郑涛, 周欣然, 张龙. 三种群捕食-竞争-合作混杂模型的全局渐近稳定性[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 64-70.
[4] 王俊杰, 温雪岩, 徐克生, 于鸣. 基于局部敏感哈希的改进堆叠算法[J]. 广西师范大学学报(自然科学版), 2020, 38(4): 21-31.
[5] 罗兰, 周楠, 司杰. 不确定细胞神经网络鲁棒稳定新的时滞划分法[J]. 广西师范大学学报(自然科学版), 2019, 37(4): 45-52.
[6] 洪玲玲,杨启贵. 新四维超混沌系统的复杂动力学研究[J]. 广西师范大学学报(自然科学版), 2019, 37(3): 96-105.
[7] 吴娟,朱宏阳,梅平,陈武,李中宝. 聚甲基丙烯酸甲酯改性纳米SiO2及其Pickering乳液稳定性[J]. 广西师范大学学报(自然科学版), 2019, 37(3): 120-131.
[8] 陈思谕, 邹艳丽, 周建, 谭华珍. 电网发电机功率分配及电网负载不均衡发展研究[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 52-59.
[9] 韩会庆, 蔡广鹏, 尹昌应, 马庚, 张英佳, 陆艺. 2000年和2015年乌江中上游景观稳定性变化研究[J]. 广西师范大学学报(自然科学版), 2019, 37(1): 197-204.
[10] 苗新艳, 张龙, 罗颜涛, 潘丽君. 一类交替变化的竞争—合作混杂种群模型研究[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 25-31.
[11] 黄开娇, 肖飞雁. 具有Beddington-DeAngelis型功能性反应的随机捕食—被捕食系统[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 32-40.
[12] 梅春草,韦笃取*,罗晓曙. 分布式发电系统中感性负载的稳定性研究[J]. 广西师范大学学报(自然科学版), 2018, 36(2): 50-55.
[13] 冯金明,李遵先. 一类具扩散的传染病模型的稳定性分析[J]. 广西师范大学学报(自然科学版), 2018, 36(2): 63-68.
[14] 陈春燕, 许志鹏, 邝华. 连续记忆效应的交通流跟驰建模与稳定性分析[J]. 广西师范大学学报(自然科学版), 2017, 35(3): 14-21.
[15] 邢伟, 高晋芳, 颜七笙, 周其华. 具有非线性传染率及脉冲免疫接种的SIQR传染病模型[J]. 广西师范大学学报(自然科学版), 2017, 35(2): 58-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 胡锦铭, 韦笃取. 不同阶次分数阶永磁同步电机的混合投影同步[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 1 -8 .
[2] 武康康, 周鹏, 陆叶, 蒋丹, 闫江鸿, 钱正成, 龚闯. 基于小批量梯度下降法的FIR滤波器[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 9 -20 .
[3] 刘东, 周莉, 郑晓亮. 基于SA-DBN的超短期电力负荷预测[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 21 -33 .
[4] 张伟彬, 吴军, 易见兵. 基于RFB网络的特征融合管制物品检测算法研究[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 34 -46 .
[5] 王金艳, 胡春, 高健. 一种面向知识编译的OBDD构造方法[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 47 -54 .
[6] 逯苗, 何登旭, 曲良东. 非线性参数的精英学习灰狼优化算法[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 55 -67 .
[7] 李莉丽, 张兴发, 李元, 邓春亮. 基于高频数据的日频GARCH模型估计[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 68 -78 .
[8] 李松涛, 李群宏, 张文. 三自由度碰撞振动系统的余维二擦边分岔与混沌控制[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 79 -92 .
[9] 赵红涛, 刘志伟. λ重完全二部3-一致超图λK(3)n,n分解为超图双三角锥[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 93 -98 .
[10] 李梦, 曹庆先 , 胡宝清. 1960—2018年广西大陆海岸线时空变迁分析[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 99 -108 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发