|
|
广西师范大学学报(自然科学版) ›› 2026, Vol. 44 ›› Issue (2): 164-174.doi: 10.16088/j.issn.1001-6600.2025022503
刘胜强*, 刘泽含, 骈晓宇
LIU Shengqiang*, LIU Zehan, PIAN Xiaoyu
摘要: 本文建立包含独立媒体信息仓室M的SIVR传染病模型,研究媒体报道和不完善疫苗接种对疾病传播的影响。模型分析了基本再生数、无病平衡点的稳定性、地方病平衡点的存在性及后向分支存在条件。结果表明,模型呈现复杂的动力学行为,表明媒体报道和不完善疫苗接种可能增加疾病控制的难度。数值模拟揭示了模型的分支现象,同时表明提高公众对媒体信息的认知、加强疫苗接种宣传有助于减少感染人数。本文研究为理解媒体报道和疫苗接种在疾病传播中的作用提供理论依据,并为制定公共卫生策略提供参考。
中图分类号: O193
| [1] 崔景安, 吕金隆, 郭松柏, 等.新发传染病动力学模型:应用于2019新冠肺炎传播分析[J].应用数学学报, 2020, 43(2):147-155.DOI:10.1360/SSM-2020-0026. [2] RAI R K, TIWARI P K, KANG Y, et al.Modeling the effect of literacy and social media advertisements on the dynamics of infectious diseases[J].Mathematical Biosciences and Engineering, 2020, 17(5):5812-5848.DOI:10.3934/mbe.2020311. [3] NIU Z M, QIN Z, HU P W, et al.Health beliefs, trust in media sources, health literacy, and preventive behaviors among high-risk Chinese for COVID-19[J].Health Communication, 2022, 37(8):1004-1012.DOI:10.1080/10410236.2021.1880684. [4] LIU R S, WU J H, ZHU H P.Media/psychological impact on multiple outbreaks of emerging infectious diseases[J].Computational and Mathematical Methods in Medicine, 2007, 8(3):612372.DOI:10.1080/17486700701425870. [5] LIU Y P, CUI J A.The impact of media coverage on the dynamics of infectious disease[J].International Journal of Biomathematics, 2008, 1(1):65-74.DOI:10.1142/s1793524508000023. [6] LU X J, WANG S K, LIU S Q, et al.An SEI infection model incorporating media impact[J].Mathematical Biosciences and Engineering, 2017, 14(5/6):1317-1335.DOI:10.3934/mbe.2017068. [7] WANG N, QI L X, BESSANE M, et al.Global Hopf bifurcation of a two-delay epidemic model with media coverage and asymptomatic infection[J].Journal of Differential Equations, 2023, 369:1-40.DOI:10.1016/j.jde.2023.05.036. [8] XIE J L, GUO H L, ZHANG M Y.Dynamics of an SEIR model with media coverage mediated nonlinear infectious force[J].Mathematical Biosciences and Engineering, 2023, 20(8):14616-14633.DOI:10.3934/mbe.2023654. [9] SONG P F, XIAO Y N.Analysis of a diffusive epidemic system with spatial heterogeneity and lag effect of media impact[J].Journal of Mathematical Biology, 2022, 85(2):17.DOI:10.1007/s00285-022-01780-w. [10] LI T J, XIAO Y N.Complex dynamics of an epidemic model with saturated media coverage and recovery[J].Nonlinear Dynamics, 2022, 107(3):2995-3023.DOI:10.1007/s11071-021-07096-6. [11] BUONOMO B, DELLA MARCA R.Oscillations and hysteresis in an epidemic model with information-dependent imperfect vaccination[J].Mathematics and Computers in Simulation, 2019, 162:97-114.DOI:10.1016/j.matcom.2019.01.005. [12] 张真真, 李盈科, 赵睿轩.具有疫苗接种和年龄结构的疟疾传播模型的动力学行为[J].淮阴师范学院学报(自然科学版), 2024,23(4):288-296.DOI:10.16119/j.cnki.issn1671-6876.2024.04.012. [13] 韩梦洁, 刘俊利.具有不完全接种的反应扩散禽流感模型[J].山东大学学报(理学版), 2023,58(10):106-121. [14] MAHADHIKA C K, ALDILA D.A deterministic transmission model for analytics-driven optimization of COVID-19 post-pandemic vaccination and quarantine strategies[J].Mathematical Biosciences and Engineering, 2024, 21(4):4956-4988.DOI:10.3934/mbe.2024219. [15] BUGALIA S, TRIPATHI J P, WANG H.Mutations make pandemics worse or better:modeling SARS-CoV-2 variants and imperfect vaccination[J].Journal of Mathematical Biology, 2024, 88(4):45.DOI:10.1007/s00285-024-02068-x. [16] 王琪, 窦霁虹.一类考虑垂直传染、接种及人均病床数的SIVS传染病模型分析[J].西南师范大学学报(自然科学版), 2022, 47(10):26-36.DOI:10.13718/j.cnki.xsxb.2022.10.004. [17] SAHA P, BISWAS S K, ALI BISWAS M H, et al.An SEQAIHR model to study COVID-19 transmission and optimal control strategies in Hong Kong, 2022[J].Nonlinear Dynamics, 2023, 111(7):6873-6893.DOI:10.1007/s11071-022-08181-0. [18] LI Y, SAMREEN, ZADA L, et al.Assessing the impact of time-varying optimal vaccination and non-pharmaceutical interventions on the dynamics and control of COVID-19:a computational epidemic modeling approach[J].Mathematics, 2023, 11(20):4253.DOI:10.3390/math11204253. [19] 黄自然, 古月明.一类肝吸虫病动力学模型及后向分支分析[J].赣南师范大学学报, 2024,45(6):9-13.DOI:10.13698/j.cnki.cn36-1346/c.2024.06.002. [20] van den DRIESSCHE P, WATMOUGH J.Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J].Mathematical Biosciences, 2002, 180(1/2):29-48.DOI:10.1016/S0025-5564(02)00108-6. [21] CASTILLO-CHAVEZ C, SONG B J.Dynamical models of tuberculosis and their applications[J].Mathematical Biosciences and Engineering, 2004, 1(2):361-404.DOI:10.3934/mbe.2004.1.361. |
| [1] | 陆媚静, 范鹏来, 孙涛, 周岐海. 非人灵长类动物肠道寄生虫与宿主相互作用的研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 354-365. |
| [2] | 张琬婧, 林支桂. 增长区域上一类寄生虫-宿主模型的Turing不稳定[J]. 广西师范大学学报(自然科学版), 2022, 40(2): 132-139. |
| [3] | 冯金明,李遵先. 一类具扩散的传染病模型的稳定性分析[J]. 广西师范大学学报(自然科学版), 2018, 36(2): 63-68. |
| [4] | 杨鲲, 林娇, 蒋贵荣. 具有脉冲生育的随机SIS传染病模型的动力学分析[J]. 广西师范大学学报(自然科学版), 2015, 33(4): 81-86. |
| [5] | 郝丽杰, 蒋贵荣, 鹿鹏. 具垂直传染的SIRS传染病模型的脉冲控制和分岔分析[J]. 广西师范大学学报(自然科学版), 2012, 30(4): 42-47. |
|
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |