广西师范大学学报(自然科学版) ›› 2026, Vol. 44 ›› Issue (2): 164-174.doi: 10.16088/j.issn.1001-6600.2025022503

• 数学与统计学 • 上一篇    下一篇

具有媒体信息和不完善疫苗的传染病模型

刘胜强*, 刘泽含, 骈晓宇   

  1. 天津工业大学 数学科学学院,天津 300387
  • 收稿日期:2025-02-25 修回日期:2025-05-28 发布日期:2026-02-03
  • 通讯作者: 刘胜强(1975—),男,湖南宁乡人,天津工业大学教授,博导。E-mail: sqliu@tiangong.edu.cn
  • 基金资助:
    国家自然科学基金(12271401);天津市应用基础研究面上项目(22JCYBJC00080)

An Infectious Disease Model with Media Information and Imperfect Vaccination

LIU Shengqiang*, LIU Zehan, PIAN Xiaoyu   

  1. School of Mathematical Sciences, Tiangong University, Tianjin 300387, China
  • Received:2025-02-25 Revised:2025-05-28 Published:2026-02-03

摘要: 本文建立包含独立媒体信息仓室M的SIVR传染病模型,研究媒体报道和不完善疫苗接种对疾病传播的影响。模型分析了基本再生数、无病平衡点的稳定性、地方病平衡点的存在性及后向分支存在条件。结果表明,模型呈现复杂的动力学行为,表明媒体报道和不完善疫苗接种可能增加疾病控制的难度。数值模拟揭示了模型的分支现象,同时表明提高公众对媒体信息的认知、加强疫苗接种宣传有助于减少感染人数。本文研究为理解媒体报道和疫苗接种在疾病传播中的作用提供理论依据,并为制定公共卫生策略提供参考。

关键词: 传染病, 数学模型, 媒体信息, 疫苗接种, 后向分支

Abstract: This paper investigates the impact of media coverage and imperfect vaccination on disease transmission by establishing an SIVR infectious disease model including an independent media information compartment M. The model analyzes the basic reproduction number, the stability of the disease-free equilibrium, the existence of the endemic equilibrium, and the conditions for backward bifurcation. The results indicate that the model exhibits complex dynamical behaviors, suggesting that media coverage and imperfect vaccination may increase the difficulty of disease control. Numerical simulations reveal bifurcation phenomena in the model, while also demonstrating that enhancing public awareness of media information and strengthening vaccination promotion can help reduce the number of infections. The study provides a theoretical foundation for understanding the role of media coverage and vaccination in disease transmission and offers references for formulating more effective public health strategies.

Key words: infectious disease, mathematical model, media information, vaccination rate, backward bifurcation

中图分类号:  O193

[1] 崔景安, 吕金隆, 郭松柏, 等.新发传染病动力学模型:应用于2019新冠肺炎传播分析[J].应用数学学报, 2020, 43(2):147-155.DOI:10.1360/SSM-2020-0026.
[2] RAI R K, TIWARI P K, KANG Y, et al.Modeling the effect of literacy and social media advertisements on the dynamics of infectious diseases[J].Mathematical Biosciences and Engineering, 2020, 17(5):5812-5848.DOI:10.3934/mbe.2020311.
[3] NIU Z M, QIN Z, HU P W, et al.Health beliefs, trust in media sources, health literacy, and preventive behaviors among high-risk Chinese for COVID-19[J].Health Communication, 2022, 37(8):1004-1012.DOI:10.1080/10410236.2021.1880684.
[4] LIU R S, WU J H, ZHU H P.Media/psychological impact on multiple outbreaks of emerging infectious diseases[J].Computational and Mathematical Methods in Medicine, 2007, 8(3):612372.DOI:10.1080/17486700701425870.
[5] LIU Y P, CUI J A.The impact of media coverage on the dynamics of infectious disease[J].International Journal of Biomathematics, 2008, 1(1):65-74.DOI:10.1142/s1793524508000023.
[6] LU X J, WANG S K, LIU S Q, et al.An SEI infection model incorporating media impact[J].Mathematical Biosciences and Engineering, 2017, 14(5/6):1317-1335.DOI:10.3934/mbe.2017068.
[7] WANG N, QI L X, BESSANE M, et al.Global Hopf bifurcation of a two-delay epidemic model with media coverage and asymptomatic infection[J].Journal of Differential Equations, 2023, 369:1-40.DOI:10.1016/j.jde.2023.05.036.
[8] XIE J L, GUO H L, ZHANG M Y.Dynamics of an SEIR model with media coverage mediated nonlinear infectious force[J].Mathematical Biosciences and Engineering, 2023, 20(8):14616-14633.DOI:10.3934/mbe.2023654.
[9] SONG P F, XIAO Y N.Analysis of a diffusive epidemic system with spatial heterogeneity and lag effect of media impact[J].Journal of Mathematical Biology, 2022, 85(2):17.DOI:10.1007/s00285-022-01780-w.
[10] LI T J, XIAO Y N.Complex dynamics of an epidemic model with saturated media coverage and recovery[J].Nonlinear Dynamics, 2022, 107(3):2995-3023.DOI:10.1007/s11071-021-07096-6.
[11] BUONOMO B, DELLA MARCA R.Oscillations and hysteresis in an epidemic model with information-dependent imperfect vaccination[J].Mathematics and Computers in Simulation, 2019, 162:97-114.DOI:10.1016/j.matcom.2019.01.005.
[12] 张真真, 李盈科, 赵睿轩.具有疫苗接种和年龄结构的疟疾传播模型的动力学行为[J].淮阴师范学院学报(自然科学版), 2024,23(4):288-296.DOI:10.16119/j.cnki.issn1671-6876.2024.04.012.
[13] 韩梦洁, 刘俊利.具有不完全接种的反应扩散禽流感模型[J].山东大学学报(理学版), 2023,58(10):106-121.
[14] MAHADHIKA C K, ALDILA D.A deterministic transmission model for analytics-driven optimization of COVID-19 post-pandemic vaccination and quarantine strategies[J].Mathematical Biosciences and Engineering, 2024, 21(4):4956-4988.DOI:10.3934/mbe.2024219.
[15] BUGALIA S, TRIPATHI J P, WANG H.Mutations make pandemics worse or better:modeling SARS-CoV-2 variants and imperfect vaccination[J].Journal of Mathematical Biology, 2024, 88(4):45.DOI:10.1007/s00285-024-02068-x.
[16] 王琪, 窦霁虹.一类考虑垂直传染、接种及人均病床数的SIVS传染病模型分析[J].西南师范大学学报(自然科学版), 2022, 47(10):26-36.DOI:10.13718/j.cnki.xsxb.2022.10.004.
[17] SAHA P, BISWAS S K, ALI BISWAS M H, et al.An SEQAIHR model to study COVID-19 transmission and optimal control strategies in Hong Kong, 2022[J].Nonlinear Dynamics, 2023, 111(7):6873-6893.DOI:10.1007/s11071-022-08181-0.
[18] LI Y, SAMREEN, ZADA L, et al.Assessing the impact of time-varying optimal vaccination and non-pharmaceutical interventions on the dynamics and control of COVID-19:a computational epidemic modeling approach[J].Mathematics, 2023, 11(20):4253.DOI:10.3390/math11204253.
[19] 黄自然, 古月明.一类肝吸虫病动力学模型及后向分支分析[J].赣南师范大学学报, 2024,45(6):9-13.DOI:10.13698/j.cnki.cn36-1346/c.2024.06.002.
[20] van den DRIESSCHE P, WATMOUGH J.Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J].Mathematical Biosciences, 2002, 180(1/2):29-48.DOI:10.1016/S0025-5564(02)00108-6.
[21] CASTILLO-CHAVEZ C, SONG B J.Dynamical models of tuberculosis and their applications[J].Mathematical Biosciences and Engineering, 2004, 1(2):361-404.DOI:10.3934/mbe.2004.1.361.
[1] 陆媚静, 范鹏来, 孙涛, 周岐海. 非人灵长类动物肠道寄生虫与宿主相互作用的研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 354-365.
[2] 张琬婧, 林支桂. 增长区域上一类寄生虫-宿主模型的Turing不稳定[J]. 广西师范大学学报(自然科学版), 2022, 40(2): 132-139.
[3] 冯金明,李遵先. 一类具扩散的传染病模型的稳定性分析[J]. 广西师范大学学报(自然科学版), 2018, 36(2): 63-68.
[4] 杨鲲, 林娇, 蒋贵荣. 具有脉冲生育的随机SIS传染病模型的动力学分析[J]. 广西师范大学学报(自然科学版), 2015, 33(4): 81-86.
[5] 郝丽杰, 蒋贵荣, 鹿鹏. 具垂直传染的SIRS传染病模型的脉冲控制和分岔分析[J]. 广西师范大学学报(自然科学版), 2012, 30(4): 42-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 田晟, 赵凯龙, 苗佳霖. 基于改进YOLO11n模型的自动驾驶道路交通检测算法研究[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 1 -9 .
[2] 徐秀虹, 张进燕, 卢羽玲, 梁小平, 廖广凤, 卢汝梅. 萝藦科药用植物中新C21甾体的研究进展(Ⅱ)[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 1 -16 .
[3] 王星宇, 郑浩楠, 刘肖, 崔世龙, 蔡进军. 壳聚糖基吸附材料的制备及其吸附去除水中污染物的研究进展[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 17 -30 .
[4] 田晟, 冯帅涛, 李嘉. 一种基于复合框架的城市道路场景车辆轨迹提取方法[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 31 -51 .
[5] 吕辉, 司可. 基于改进RT-DETR的光伏板缺陷检测[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 52 -64 .
[6] 宋冠武, 李建军. 基于自蒸馏边缘细化的遥感图像语义分割[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 65 -76 .
[7] 王旭阳, 梁宇航. 多尺度非对称注意力遥感去雾Transformer[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 77 -89 .
[8] 张胜伟, 曹洁. 融合傅里叶卷积与差异感知的钢材表面微小缺陷检测算法[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 90 -102 .
[9] 王巍, 李智威, 张赵阳, 张洪, 周蠡, 王振, 黄放, 王灿. 基于IFA-BP神经网络模型的变电站碳排放预测[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 103 -114 .
[10] 罗缘, 朱文忠, 王文, 吴宇浩. 基于改进PatchTST的多步水质预测模型[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 115 -131 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发