广西师范大学学报(自然科学版) ›› 2026, Vol. 44 ›› Issue (2): 199-210.doi: 10.16088/j.issn.1001-6600.2025022401

• 化学与材料科学 • 上一篇    下一篇

一株海鞘来源真菌Penicilliumsp.次级代谢产物及抗菌活性研究

贾辉1,2, 卢杏红1,2, 吕东艳1,2, 梁家萍1,2, 徐伟锋1,2*   

  1. 1.广西师范大学 化学与药学学院,广西 桂林 541004;
    2.省部共建药用资源化学与药物分子工程国家重点实验室(广西师范大学),广西 桂林 541004
  • 收稿日期:2025-02-24 修回日期:2025-05-21 发布日期:2026-02-03
  • 通讯作者: 徐伟锋(1988—),男,广西梧州人,广西师范大学副教授,博士。E-mail: xuweifeng_u@163.com
  • 基金资助:
    广西科技计划项目基地和人才专项(桂科AD22080008);药用资源化学与药物分子工程国家重点实验室资助项目(CMEMR2020-A)

Secondary Metabolites and Antifungal Activity ofAscidian-Derived Fungus Penicillium sp.

JIA Hui1,2, LU Xinghong1,2, LÜ Dongyan1,2, LIANG Jiaping1,2, XU Weifeng1,2*   

  1. 1. School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin Guangxi 541004, China;
    2. State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University), Guilin Guangxi 541004, China
  • Received:2025-02-24 Revised:2025-05-21 Published:2026-02-03

摘要: 本研究以海鞘来源青霉菌Penicillium sp. HQ2-12为研究对象,旨在探究其次级代谢产物的化学多样性及其抗柑橘砂皮病菌活性。实验采用质量分数0.9%海盐大米固体培养基对菌体进行发酵培养,并综合运用正相、反相柱层析及半制备高效液相色谱等技术对其次级代谢产物进行分离、提取和纯化。通过核磁共振波谱(NMR)和质谱(MS)对化合物结构进行鉴定,同时采用微量二倍稀释法评价其抗菌活性。共分离得到16个已知化合物,包括5个吲哚二萜类化合物(rhizovarin A(1)、rhizovarin B(2)、19-hydroxypenitrem A(3)、PC-M4(4)、10β-hydroxy-13-desoxypaxilline(5)),3个喹啉酮类化合物(viridicatol(6)、3-hydroxy-4-phenylquinolin-2(1H)-one(7)、aflaquinolone F(8)),7个苯二氮-类化合物(arctosin(9)、cyclopenin(10)、(3S)-1,4-benzodiazepine 2,5-dione(11)、(Z)-3-benzylidene-4-methyl-3,4-dihydro-1H-benzo[e][1,4]diazepine-2,5-dione(12)、7-methoxycyclopenin(13)、7-methoxycyclopeptin(14)、7-methoxydehydrocyclopeptin(15))和1个甾醇类化合物(ergosterol(16)),其中化合物1、2和8为首次从青霉菌中分离得到。抗菌活性测试结果显示,化合物1~3对柑橘砂皮病菌表现出良好的抑制活性,其MIC(最小抑制浓度)分别为64、32和64 mg/L,化合物6对多种细菌表现出显著抑制活性。本研究首次报道吲哚二萜类化合物具有抗柑橘砂皮病菌活性,其中化合物2显示较强的抗菌活性,具有潜在的开发研究价值。

关键词: 海鞘来源真菌, 次级代谢产物, 柑橘砂皮病菌, 抗真菌活性, 抗细菌活性

Abstract: In this study, the ascidian-derived fungus Penicillium sp. HQ2-12 was investigated to explore the chemical diversity of its secondary metabolites and their antifungal activity against Diaporthe citri. The fungus was cultured on the solid medium of 0.9% sea salt rice for fermentation. Comprehensive techniques, including normal-phase and reverse-phase column chromatography, as well as semi-preparative high-performance liquid chromatography (HPLC), were employed for the isolation, extraction, and purification of secondary metabolites. The structures of the compounds were elucidated using nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). Antifungal activity was evaluated using the microdilution broth method. A total of 16 known compounds were isolated,including five indole diterpenoids, namely rhizovarin A (1)、rhizovarin B (2)、19-hydroxypenitrem A (3)、PC-M4 (4)、10β-hydroxy-13-desoxypaxilline (5), three quinoline derivatives, namely viridicatol (6)、3-hydroxy-4-phenylquinolin-2(1H)-one (7)、aflaquinolone F (8), seven benzodiazepines, namely arctosin (9)、cyclopenin (10)、(3S)-1,4-benzodiazepine 2,5-dione (11)、(Z)-3-benzylidene-4-methyl-3,4-dihydro-1H-benzo[e][1,4]diazepine-2,5-dione (12)、7-methoxycyclopenin (13)、7-methoxycyclopeptin (14)、7-methoxydehydrocyclopeptin (15), and one sterol, namely ergosterol (16).Notably, compounds 1, 2, and 8 represent the first reported isolates from the Penicillium genus. Antifungal activity assays revealed that compounds 1-3 exhibited significant inhibitory activity against D. citri, with minimum inhibitory concentrations (MICs) of 64, 32 and 64 mg/L, respectively. Moreover, compound 6 exhibited significant inhibitory activity against multiple bacterial strains. This study was the first to report the antifungal activity of indole-diterpenoid compounds against D. citri, with compound 2 demonstrating strong antimicrobial activity and potential for further development and research.

Key words: ascidian-derived fungi, secondary metabolites, Diaporthe citri, antifungal activity, antibacterial activity

中图分类号:  O629.9;TQ450

[1] ZHOU Z H, LU S, LIU T T, et al.Biocontrol of Citrus melanose Diaporthe citri by Bacillus subtilis M23[J].Biological Control, 2024, 197:105608.DOI:10.1016/j.biocontrol.2024.105608.
[2] LIU X Y, CHAISIRI C, LIN Y, et al.Effective management of Citrus melanose based on combination of ecofriendly chemicals[J].Plant Disease, 2023, 107(4):1172-1176.DOI:10.1094/PDIS-03-22-0513-RE.
[3] CHAISIRI C, LIU X Y, LIN Y, et al.Diaporthe citri:a fungal pathogen causing melanose disease[J].Plants, 2022, 11(12):1600.DOI:10.3390/plants11121600.
[4] 韦坚芬, 邓志勇, 邓业成, 等.草珊瑚内生真菌SgG4抗植物病原真菌的活性物质研究[J].广西师范大学学报(自然科学版), 2024, 42(2):175-182.DOI:10.16088/j.issn.1001-6600.2023041801.
[5] CHEN J, XU L, ZHANG X Q, et al.Discovery of a natural small-molecule AMP-activated kinase activator that alleviates nonalcoholic steatohepatitis[J].Marine Life Science & Technology, 2023, 5(2):196-210.DOI:10.1007/s42995-023-00168-z.
[6] 李奇聪, 陈洁萍, 欧艳绍, 等.柑橘内生真菌LJZ-Y-11次生代谢产物抑菌活性研究[J].广西师范大学学报(自然科学版), 2023, 41(1):155-163.DOI:10.16088/j.issn.1001-6600.2021102801.
[7] 徐伟锋, 姚飞华, 梁学锋, 等.广豆根内生真菌GDG-180代谢产物研究[J].广西师范大学学报(自然科学版), 2017, 35(1):58-61.DOI:10.16088/j.issn.1001-6600.2017.01.010.
[9] CANTRELL C L, DAYAN F E, DUKE S O.Natural products as sources for new pesticides[J].Journal of Natural Products, 2012, 75(6):1231-1242.DOI:10.1021/np300024u.
[10] 傅春青, 梁春祥, 梁莉芬, 等.嗜盐真菌Cladosporium cladosporioides GXIMD 00533次级代谢产物及其生物活性研究[J].广西师范大学学报(自然科学版), 2025, 43(2):247-257.DOI:10.16088/j.issn.1001-6600.2024082203.
[11] MARRONE P G.Pesticidal natural products-status and future potential[J].Pest Management Science, 2019, 75(9):2325-2340.DOI:10.1002/ps.5433.
[12] 吴信, 刘涛, 陈新.天然产物资源的创新发展[J].中国科学(生命科学), 2025, 55(4):593-595.DOI:10.1360/SSV-2025-0074.
[13] 寸靖芳, 任广伟, 徐蓬军, 等.具有农用活性海洋真菌菌株的筛选和鉴定[J].四川农业科技, 2024(7):128-131.DOI:10.3969/j.issn.1004-1028.2024.07.034.
[14] 李鹏杰, 曹西珍, 顾玉诚, 等.海洋天然药物研究进展系列一:海洋天然产物在抗疟药物研发中的机遇与挑战[J].中国海洋药物, 2025, 44(2):65-80.DOI:10.13400/j.cnki.cjmd.2025.02.007.
[15] 张颖, 张诗, 宁耀东, 等.具有抗真菌活性的海洋天然产物研究进展[J].中国抗生素杂志, 2023, 48(4):361-367.DOI:10.3969/j.issn.1001-8689.2023.04.001.
[16] 姜明华, 陈森华, 郭珩, 等.海鞘微生物来源活性次级代谢产物研究进展[J].中国海洋药物, 2023, 42(3):69-81.DOI:10.13400/j.cnki.cjmd.2023.03.005.
[17] RAMESH C, TULASI B R, RAJU M, et al.Marine natural products from tunicates and their associated microbes[J].Marine Drugs, 2021, 19(6):308.DOI:10.3390/md19060308.
[18] ZOU G, YANG W C, CHEN T, et al.Griseofulvin enantiomers and bromine-containing griseofulvin derivatives with antifungal activity produced by the mangrove endophytic fungus Nigrospora sp.QQYB1[J].Marine Life Science & Technology, 2024, 6(1):102-114.DOI:10.1007/s42995-023-00210-0.
[19] LIU Y F, DU H F, ZHANG Y H, et al.Chaeglobol A, an unusual octocyclic sterol with antifungal activity from the marine-derived fungus Chaetomium globosum HBU-45[J].Chinese Chemical Letters, 2025, 36(3):109858.DOI:10.1016/j.cclet.2024.109858.
[20] DU H F, LI L, ZHANG Y H, et al.The first dimeric indole-diterpenoids from a marine-derived Penicillium sp.fungus and their potential for anti-obesity drugs[J].Marine Life Science & Technology, 2025, 7(1):120-131.DOI:10.1007/s42995-024-00253-x.
[21] SHIN H J.Natural products from marine fungi[J].Marine Drugs, 2020, 18(5):230.DOI:10.3390/md18050230.
[22] CARROLL A R, COPP B R, GRKOVIC T, et al.Marine natural products[J].Natural Product Reports, 2025, 42(2):257-297.DOI:10.1039/d4np00067f.
[23] MA H G, LIU Q, ZHU G L, et al.Marine natural products sourced from marine-derived Penicillium fungi[J].Journal of Asian Natural Products Research, 2016, 18(1):92-115.DOI:10.1080/10286020.2015.1127230.
[24] BARRETO D L C, LOWELL CANTRELL C, KARLA DA SILVA M, et al.Phytotoxic and antifungal activity of (-)-penienone produced by Penicillium palitans (ascomycota) isolated from deep sea sediments in the southern ocean, maritime Antarctica[J].Chemistry & Biodiversity, 2025, 22(3):e202401603.DOI:10.1002/cbdv.202401603.
[25] VIEIRA G, SETTE L D, DE ANGELIS D A, et al.Antifungal activity of cyclopaldic acid from Antarctic Penicillium against phytopathogenic fungi[J].3 Biotech, 2023, 13(11):374.DOI:10.1007/s13205-023-03792-9.
[26] HAN Y Q, ZHANG Q, XU W F, et al.Targeted isolation of antitubercular cycloheptapeptides and an unusual pyrroloindoline-containing new analog, asperpyrroindotide A, using LC-MS/MS-based molecular networking[J].Marine Life Science & Technology, 2023, 5(1):85-93.DOI:10.1007/s42995-022-00157-8.
[27] ZHOU J T, WU Q, ZHAO J X, et al.Sucurchalasins a and B, sulfur-containing heterodimers of a cytochalasan and a macrolide from the endophytic fungus Aspergillus spelaeus GDGJ-286[J].Journal of Natural Products, 2024, 87(9):2327-2334.DOI:10.1021/acs.jnatprod.4c00489.
[28] PENG Z H, JIA H, LUO Y L, et al.Talaroterpenoids A-F:six new seco-terpenoids from the marine-derived fungus Talaromyces aurantiacus[J].Marine Drugs, 2024, 22(10):475.DOI:10.3390/md22100475.
[29] ZHOU T Y, GUO Y Y, JING Q Q, et al.Semisynthesis and biological evaluation of 17-hydroxybrevianamide N derivatives as anti-inflammatory agents by mediating NF-κB and MAPK signaling pathways[J].European Journal of Medicinal Chemistry, 2025, 290:117541.DOI:10.1016/j.ejmech.2025.117541.
[30] MO T X, LV L X, HUANG X S, et al.A series of meroterpenoids with highly oxygenated skeletons from the endophytic fungus Penicillium sp.and their anti-inflammatory activities[J].Phytochemistry, 2025, 236:114493.DOI:10.1016/j.phytochem.2025.114493.
[31] XIE Y H, WANG C H, WANG R, et al.Anti-neuroinflammatory naphthol dimers from the marine-derived fungus Penicillium sp.HQ1-23[J].Phytochemistry, 2025, 237:114534.DOI:10.1016/j.phytochem.2025.114534.
[32] 邓欢, 王玉军.杀菌剂百菌清的研究进展[J].轻工科技, 2012, 28(4):26-27.
[33] GAO S S, LI X M, WILLIAMS K, et al.Rhizovarins A-F, indole-diterpenes from the mangrove-derived endophytic fungus Mucor irregularis QEN-189[J].Journal of Natural Products, 2016, 79(8):2066-2074.DOI:10.1021/acs.jnatprod.6b00403.
[34] ZHANG P, LI X M, LI X, et al.New indole-diterpenoids from the algal-associated fungus Aspergillus nidulans[J].Phytochemistry Letters, 2015, 12:182-185.DOI:10.1016/j.phytol.2015.03.017.
[35] YAMAGUCHI T, NOZAWA K, HOSOE T, et al.Indoloditerpenes related to tremorgenic mycotoxins, penitrems, from Penicillium crustosum[J].Phytochemistry, 1993, 32(5):1177-1181.DOI:10.1016/S0031-9422(00)95087-8.
[36] HOSOE T, NOZAWA K, UDAGAWA S I, et al.Studies on fungal products.Part XXXIII.Structures of new indoloditerpenes, possible biosynthetic precursors of the tremorgenic mycotoxins, penitrems, from Penicillium crustosum[J].Chemical and Pharmaceutical Bulletin, 1990, 38(12):3473-3475.DOI:10.1248/cpb.38.3473.
[37] ZHANG Y H, HUANG S D, PAN H Q, et al.Structure determination of two new indole-diterpenoids from Penicillium sp.CM-7 by NMR spectroscopy[J].Magnetic Resonance in Chemistry, 2014, 52(6):306-309.DOI:10.1002/mrc.4065.
[38] 冯丹, 秦玲玲, 郑东滨, 等.冬虫夏草内生菌皮壳青霉菌化学成分的研究[J].中成药, 2019, 41(8):1863-1867.DOI:10.3969/j.issn.1001-1528.2019.08.022.
[39] NEFF S A, LEE S, ASAMI Y, et al.Aflaquinolones A-G:secondary metabolites from marine and fungicolous isolates of Aspergillus spp[J].Journal of Natural Products, 2012, 75(3):464-472.DOI:10.1021/np200958r.
[40] 刘军亮, 楼盈凯, 胡志钰, 等.圆弧菌醇和圆弧菌素的分离纯化及结构解析[J].厦门大学学报(自然科学版), 2012, 51(3):386-390.
[41] 辛志宏, 方玉春, 朱天骄, 等.海绵来源真菌黄灰青霉Sp-19中的抗肿瘤活性成分研究[J].中国海洋药物, 2006, 25(6):1-6.DOI:10.3969/j.issn.1002-3461.2006.06.002.
[42] PAN C Q, SHI Y T, CHEN X G, et al.New compounds from a hydrothermal vent crab-associated fungus Aspergillus versicolor XZ-4[J].Organic & Biomolecular Chemistry, 2017, 15(5):1155-1163.DOI:10.1039/C6OB02374F.
[43] 盛蒙珂, 赵莹菲, 田若丹, 等.怀山药内生真菌Chaetomium sp.的次生代谢产物研究[J].天然产物研究与开发, 2024, 36(6):982-985, 962.DOI:10.16333/j.1001-6880.2024.6.008.
[44] FU P N, GUO F, ZHOU T N, et al.Shearinines U-Y, indole diterpenoids from an entomogenous fungus, Penicillium sp[J].RSC Advances, 2025, 15(4):2437-2443.DOI:10.1039/D4RA08249D.
[45] KALININA S A, JAGELS A, CRAMER B, et al.Influence of environmental factors on the production of penitrems A-F by Penicillium crustosum[J].Toxins, 2017, 9(7):210.DOI:10.3390/toxins9070210.
[46] BABU J, POPAY A J, MILES C O, et al.Identification and structure elucidation of janthitrems a and D from Penicillium janthinellum and determination of the tremorgenic and anti-insect activity of janthitrems a and B[J].Journal of Agricultural and Food Chemistry, 2018, 66(50):13116-13125.DOI:10.1021/acs.jafc.8b04964.
[47] LIANG J H, HUO X K, CHENG Z B, et al.An indole diterpenoid isolated from the fungus Drechmeria sp.and its antimicrobial activity[J].Natural Product Research, 2019, 33(19):2770-2776.DOI:10.1080/14786419.2018.1501050.
[48] LIANG Z Y, SHEN N X, ZHOU X J, et al.Bioactive indole diterpenoids and polyketides from the marine-derived fungus Penicillium javanicum[J].Chemistry of Natural Compounds, 2020, 56(2):379-382.DOI:10.1007/s10600-020-03039-6.
[49] PANG S, GUO Z G, WANG L, et al.Anti-IAV indole-diterpenoids from the marine-derived fungus Penicillium citrinum[J].Natural Product Research, 2023, 37(4):586-591.DOI:10.1080/14786419.2022.2078820.
[50] 刘胜贵, 周玉莎, 易江, 等.柑橘内生菌的分离、鉴定及其对沙皮病的防治作用[J].生命科学研究, 2016, 20(5):429-434.DOI:10.16605/j.cnki.1007-7847.2016.05.010.
[51] 谢钢, 裴皓然, 张家辉, 等.生防菌QD15的筛选鉴定及对柑橘砂皮病防治初步研究[J].湖南农业科学, 2024(4):60-66.DOI:10.16498/j.cnki.hnnykx.2024.004.012.
[1] 傅春青, 梁春祥, 梁莉芬, 高程海, 刘永宏, 徐新亚. 嗜盐真菌Cladosporium cladosporioides GXIMD 00533次级代谢产物及其生物活性研究[J]. 广西师范大学学报(自然科学版), 2025, 43(2): 247-257.
[2] 肖泽恩, 邹思华, 江娇, 罗海梅, 黄锡山, 刘永宏, 谭振. 木榄内生真菌Penicillium sp. GXIMD00006的次级代谢产物及其降血糖活性研究[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 150-157.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 田晟, 赵凯龙, 苗佳霖. 基于改进YOLO11n模型的自动驾驶道路交通检测算法研究[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 1 -9 .
[2] 徐秀虹, 张进燕, 卢羽玲, 梁小平, 廖广凤, 卢汝梅. 萝藦科药用植物中新C21甾体的研究进展(Ⅱ)[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 1 -16 .
[3] 王星宇, 郑浩楠, 刘肖, 崔世龙, 蔡进军. 壳聚糖基吸附材料的制备及其吸附去除水中污染物的研究进展[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 17 -30 .
[4] 田晟, 冯帅涛, 李嘉. 一种基于复合框架的城市道路场景车辆轨迹提取方法[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 31 -51 .
[5] 吕辉, 司可. 基于改进RT-DETR的光伏板缺陷检测[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 52 -64 .
[6] 宋冠武, 李建军. 基于自蒸馏边缘细化的遥感图像语义分割[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 65 -76 .
[7] 王旭阳, 梁宇航. 多尺度非对称注意力遥感去雾Transformer[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 77 -89 .
[8] 张胜伟, 曹洁. 融合傅里叶卷积与差异感知的钢材表面微小缺陷检测算法[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 90 -102 .
[9] 王巍, 李智威, 张赵阳, 张洪, 周蠡, 王振, 黄放, 王灿. 基于IFA-BP神经网络模型的变电站碳排放预测[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 103 -114 .
[10] 罗缘, 朱文忠, 王文, 吴宇浩. 基于改进PatchTST的多步水质预测模型[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 115 -131 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发