2025年04月23日 星期三

广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (6): 117-125.doi: 10.16088/j.issn.1001-6600.2023111701

• “污水处理”专栏 • 上一篇    下一篇

基于SPR效应的双凹槽单通道光子晶体光纤高折射率传感器

程灿儿1,2, 黄川洋1,2, 张秋楠1,2, 张钊1,2, 杨军3, 童章伟4, 邵伟佳1,2, 唐剑1,2, 邵来鹏1,2, 胡君辉1,2, 王咏梅1,2*   

  1. 1.广西师范大学 物理科学与技术学院,广西 桂林 541004;
    2.广西核物理与核技术重点实验室(广西师范大学),广西 桂林 541004;
    3.广西师范大学 电子与信息工程学院/集成电路学院,广西 桂林 541004;
    4.中国电子科技集团公司第三十四研究所,广西 桂林 541004
  • 收稿日期:2023-11-17 修回日期:2024-02-20 出版日期:2024-12-30 发布日期:2024-12-30
  • 通讯作者: 王咏梅(1989—),女,辽宁阜新人,广西师范大学讲师,博士。E-mail:wangyongmei65@163.com
  • 基金资助:
    国家自然科学基金(62265002,62165002);中央引导地方科技发展资金项目(桂科ZY23055007);广西自然科学基金(桂科 AD23026274);广西重点研发计划项目(桂科AB18221033)

A Double-Groove Single-Channel Photonic Crystal Fiber High Refractive Index Sensor Based on SPR

CHENG Can’er1,2, HUANG Chuanyang1,2, ZHANG Qiunan1,2, ZHANG Zhao1,2, YANG Jun3, TONG Zhangwei4, SHAO Weijia1,2, TANG Jian1,2, SHAO Laipeng1,2, HU Junhui1,2, WANG Yongmei1,2*   

  1. 1. College of Physical Science and Technology, Guangxi Normal University, Guilin Guangxi 541004, China;
    2. Guangxi Key Laboratory of Nuclear Physics and Technology (Guangxi Normal University), Guilin Guangxi 541004, China;
    3. School of Electronic and Information Engineering/School of Integrated Circuits, Guangxi Normal University, Guilin Guangxi 541004, China;
    4. The 34th Research Institute of China Electronics Technology Group Corporation, Guilin Guangxi 541004, China
  • Received:2023-11-17 Revised:2024-02-20 Online:2024-12-30 Published:2024-12-30

摘要: 传感器种类繁多,光纤传感器以其小型化、性能优良等特点从众多传感器中脱颖而出。基于此,本文以表面等离子体共振理论为支撑点,使用有限元方法进行计算,设计并研究一种D型双凹槽单通道光子晶体光纤高折射率传感器。研究结果表明,在最优结构参数下该传感器传感效果良好,在1.32~1.41的宽检测范围内,最大灵敏度达到16 200 nm/RIU,最大品质因数可达255.92 RIU-1。由此可知,本文所设计的传感器符合现代化发展需求,有望在医疗检测、生物传感等多方面实现应用价值。

关键词: 光子晶体光纤, 传感, 表面等离子体共振, 折射率, 双凹槽

Abstract: There are many types of sensors, and optical fiber sensors stand out from many sensors due to their miniaturization and excellent performance. Therefore, a D-type double-groove single-channel photonic crystal fiber high refractive index sensor is designed and studied by using the finite element method to calculate the surface plasmon resonance theory as the support point. The results show that the sensor has a good sensing effect under the optimal structural parameters, with a maximum sensitivity of 16 200 nm/RIU and a maximum figure of merit of 255.92 /RIU in a wide detection range of 1.32-1.41. It can be seen that the sensor designed in this paper meets the needs of modern development and is expected to achieve application value in medical detection, bio-sensing and other aspects.

Key words: photonic crystal fiber, sensing, surface plasmon resonance, refractive index, double grooves

中图分类号:  TP212

[1] WOOD R W. XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1902, 4(21): 396-402. DOI: 10.1080/14786440209462857.
[2] FANO U. The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves)[J]. Journal of the Optical Society of America, 1941, 31(3): 213-222. DOI: 10.1364/JOSA.31.000213.
[3] 段媛媛,杨成丽,周建刚,等.基于SPR生物传感器的免疫学检测[J].生物技术通讯,2002,13(4):264-268. DOI:10.3969/j.issn.1009-0002.2002.04.005.
[4] KNIGHT J C, BROENG J, BIRKS T A, et al. Photonic band gap guidance in optical fibers[J]. Science, 1998, 282(5393): 1476-1478. DOI: 10.1126/science.282.5393.1476.
[5] BIRKS T A, KNIGHT J C, RUSSELL P S. Endlessly single-mode photonic crystal fiber[J]. Optics Letters, 1997, 22(13): 961-963. DOI: 10.1364/ol.22.000961.
[6] AHMED R, KHAN M, AHMMED R, et al. Design, simulation & optimization of 2D photonic crystal power splitter[J]. Optics and Photonics Journal, 2013, 3(2A): 13-19. DOI: 10.4236/opj.2013.32A002.
[7] ZHAO Y, DENG Z Q, LI J. Photonic crystal fiber based surface plasmon resonance chemical sensors[J]. Sensors and Actuators B: Chemical, 2014, 202: 557-567. DOI: 10.1016/j.snb.2014.05.127.
[8] TONG K, CAI Z Y, WANG J, et al. D-type photonic crystal fiber sensor based on metal nanowire array[J]. Optik, 2020, 218: 165010. DOI: 10.1016/j.ijleo.2020.165010.
[9] FAN B, ZHANG T M X, HE S M, et al. Chirality parameter sensing based on surface plasmon resonance D-type photonic crystal fiber sensors[J]. Applied Optics, 2021, 60(12): 3314-3321. DOI: 10.1364/AO.420577.
[10] LIU W, HU C J, ZHOU L, et al. A square-lattice D-shaped photonic crystal fiber sensor based on SPR to detect analytes with large refractive indexes[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 138: 115106. DOI: 10.1016/J.PHYSE.2021.115106.
[11] JABIR J N. Comparison of high-sensitivity plasmonic temperature sensor based on photonic crystal fiber[J]. Plasmonics, 2022, 17(5): 2245-2253. DOI: 10.1007/S11468-022-01714-8.
[12] ZHOU C, ZHANG Y T, LI X, et al. Photonic crystal fiber sensor based on hybrid mechanisms: Plasmonic and directional resonance coupling[J]. Optics Communications, 2012, 285(9): 2466-2471. DOI: 10.1016/j.optcom.2012.01.031.
[13] ZHANG J G, YUAN J H, QU Y W, et al. A novel surface plasmon resonance-based photonic crystal fiber refractive index sensor with an ultra-wide detection range[J]. Optik, 2022, 259: 168977. DOI: 10.1016/j.ijleo.2022.168977.
[14] 刘庆敏,侯尚林,雷景丽.D型表面等离子共振光纤液体生物传感器设计与分析(英文)[J].光子学报,2022,51(9):215-224.
[15] CHEN X, BU W Y, WU Z F, et al. Near-infrared long-range surface plasmon resonance in a D-shaped honeycomb microstructured optical fiber coated with Au film[J]. Optics Express, 2021, 29(11): 16455-16468. DOI: 10.1364/OE.419585.
[16] MASHRAFI M, KAMRUNNAHAR Q M, HAIDER F, et al. Bio-inspired butterfly core-shaped photonic crystal fiber-based refractive index sensor[J]. OSA Continuum, 2021, 4(4): 1179-1190. DOI: 10.1364/OSAC.416953.
[17] GUPTA A, SINGH T, SINGH R K, et al. Numerical analysis of coronavirus detection using photonic crystal fibre-based SPR sensor[J]. Plasmonics, 2023, 18(2): 577-585. DOI: 10.1007%2Fs11468-022-01761-1.
[18] LIU C, YANG L, LIU Q, et al. Analysis of a surface plasmon resonance probe based on photonic crystal fibers for low refractive index detection[J]. Plasmonics, 2018, 13(3): 779-784. DOI: 10.1007/s11468-017-0572-7.
[19] PAUL D, BISWAS R. [INVITED] Highly sensitive LSPR based photonic crystal fiber sensor with embodiment of nanospheres in different material domain[J]. Optics & Laser Technology, 2018, 101: 379-387. DOI: 10.1016/j.optlastec.2017.11.040.
[20] LI C G, YAN B, LIU JJ. Refractive index sensing characteristics in a D-shaped photonic quasi-crystal fiber sensor based on surface plasmon resonance[J]. Journal of the Optical Society of America A, 2019, 36(10): 1663-1668. DOI: 10.1364/JOSAA.36.001663.
[21] ZHANG X, KANG H, WANG P, et al. Refractive index and temperature sensor based on dual-D-shapes photonic crystal fiber surface plasmon resonance[J]. The European Physical Journal Plus, 2022, 137(9): 1086. DOI: 10.1140/epjp/s13360-022-03299-x.
[22] GUERREIRO A, SANTOS D F, BAPTISTA J M. New trends in the simulation of nanosplasmonic optical D-type fiber sensors[J]. Sensors, 2019, 19(8): 1772. DOI: 10.3390/s19081772.
[23] LIU C, LÜ J W, LIU W, et al. Overview of refractive index sensors comprising photonic crystal fibers based on the surface plasmon resonance effect [Invited] [J].Chinese Optics Letters, 2021, 19(10): 102202.
[24] 陆杭林,邵来鹏,张帆,等.光纤MZI传感器传感机理与传感应用研究进展[J].广西师范大学学报(自然科学版),2022,40(6):1-17.DOI:10.16088/j.issn.1001-6600.2022050501.
[25] SINGH S, PRAJAPATI Y K. Highly sensitive dual-core symmetrical side-polished modified D-shaped SPR based PCF refractive index sensor with deeply etched micro openings[J]. Optik, 2021, 235: 166657. DOI: 10.1016/j.ijleo.2021.166657.
[26] BING P B, SUI J L, WU G F, et al. Analysis of dual-channel simultaneous detection of photonic crystal fiber sensors[J]. Plasmonics, 2020, 15(4): 1071-1076. DOI: 10.1007/s11468-020-01131-9.
[27] GU S F, SUN W, LI M, et al. Highly sensitive plasmonic refractive index sensor based on dual D-shaped photonic crystal fiber with aluminum nitride-silver films[J].Plasmonics, 2022, 17(3): 1129-1137. DOI: 10.1007/S11468-022-01609-8.
[28] PAN H G, PAN F, ZHANGA A L, et al. Wide refractive index detection range surface plasmon resonance sensor based on D-shaped photonic crystal fiber[J]. Optical and Quantum Electronics, 2022, 54(6): 393. DOI: 10.1007/S11082-022-03805-6.
[29] JAIN S, CHOUDHARY K, KUMAR S. Photonic crystal fiber-based SPR sensor for broad range of refractive index sensing applications[J]. Optical Fiber Technology, 2022, 73: 103030. DOI: 10.1016/j.yofte.2022.103030.
[30] AN W, LI C, WANG D, et al. Design and analysis of a high-sensitivity fan-shaped photonic crystal fiber sensor based on surface plasmon resonance[J]. Optical and Quantum Electronics, 2023, 55(12): 1047. DOI: 10.1007/s11082-023-05249-y.
[31] ZHANG S, WU B, GAO Z G, et al. A wide measurement range plasmonic refractive index sensor based on side-polished photonic crystal fiber[J]. Physica Scripta, 2023, 98(11): 115513. DOI: 10.1088/1402-4896/acfe4f.
[1] 凌湛钧, 李宏韬, 陆杭林, 付顾睿, 黄天启, 吕亮, 俞本立. 基于微纳光纤耦合器的折射率传感研究[J]. 广西师范大学学报(自然科学版), 2023, 41(3): 31-40.
[2] 陆杭林, 邵来鹏, 张帆, 唐剑, 黎远鹏, 王咏梅, 胡君辉. 光纤MZI传感器传感机理与传感应用研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(6): 1-17.
[3] 段美玲, 潘巨龙. 基于双向LSTM神经网络可穿戴跌倒检测研究[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 141-150.
[4] 海涛, 李娜娜, 周文杰, 陈娟, 宋敏. 基于LPWAN物联网的光伏温室智能监控系统设计[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 100-109.
[5] 滕志军, 吕金玲, 郭力文, 许媛媛. 基于改进粒子群算法的无线传感器网络覆盖策略[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 9-16.
[6] 肖发远,李好威. 基于模糊理论的无线传感器网络路由优化算法[J]. 广西师范大学学报(自然科学版), 2017, 35(1): 37-43.
[7] 黄恒杰. 传感器中基于连通支配集的区域覆盖控制算法[J]. 广西师范大学学报(自然科学版), 2016, 34(4): 19-25.
[8] 刘宏, 王其涛, 夏未君. 基于量子遗传算法的WSN三维定位方法[J]. 广西师范大学学报(自然科学版), 2015, 33(4): 49-54.
[9] 罗强, 胡三根, 臧晓冬, 龚华炜. 基于ZigBee技术的温室环境因子远程监控系统设计[J]. 广西师范大学学报(自然科学版), 2015, 33(3): 28-33.
[10] 岳才杰, 陈元琰, 朱新华. 一种有效的传感器网络区域查询算法[J]. 广西师范大学学报(自然科学版), 2015, 33(1): 52-58.
[11] 陈美娟, 李传起, 罗德俊, 陆叶. 单个LPFG实现溶液温度和折射率测量的两种方法[J]. 广西师范大学学报(自然科学版), 2014, 32(4): 1-5.
[12] 王剑, 黄植功, 许金海. 基于优化EKF的永磁同步电机转速估计[J]. 广西师范大学学报(自然科学版), 2014, 32(4): 11-17.
[13] 窦贤振, 徐晨, 左杨. 基于能量优先的WSN最优梯度路由协议[J]. 广西师范大学学报(自然科学版), 2013, 31(3): 157-163.
[14] 郑磊, 朱正礼, 侯迎坤. 基于改进的微粒群算法的WSN节点部署策略[J]. 广西师范大学学报(自然科学版), 2011, 29(4): 56-62.
[15] 柳相楠, 陈明, 冯国富, 池涛. 基于移动Agent的无线传感网络拓扑控制策略[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 215-218.
Viewed
Full text
179
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 0 0 0 179

  From Others local
  Times 64 115
  Rate 36% 64%

Abstract
63
Just accepted Online first Issue
0 0 63
  From Others local
  Times 58 5
  Rate 92% 8%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
[1] 朱格格, 黄安书, 覃盈盈. 基于Web of Science的国际红树林研究发展态势分析[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 1 -12 .
[2] 何静, 冯元柳, 邵靖雯. 基于CiteSpace的多源数据融合研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 13 -27 .
[3] 王淑颖, 卢宇翔, 董淑彤, 陈默, 康秉娅, 蒋长兰, 宿程远. 污水中抗生素抗性基因传播过程及控制技术研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 1 -15 .
[4] 钟俏, 陈生龙, 唐聪聪. 水凝胶技术在微藻采收中的应用:现状、挑战与发展分析[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 16 -29 .
[5] 翟思琪, 蔡文君, 朱苏, 李韩龙, 宋海亮, 杨小丽, 杨玉立. 汲取液溶质反向扩散与正渗透中膜污染的相互关系研究[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 30 -39 .
[6] 郑国权, 秦永丽, 汪晨祥, 葛仕佳, 闻倩敏, 蒋永荣. ABR硫酸盐还原体系分级沉淀酸性矿山废水中重金属及矿物形成[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 40 -52 .
[7] 刘洋, 张毅杰, 章延, 李玲, 孔祥铭, 李红. 饮用水处理中藻类混凝消除技术的现状与趋势——基于CiteSpace的可视化分析[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 53 -66 .
[8] 田晟, 陈东. 基于深度强化学习的网联燃料电池混合动力汽车生态驾驶联合优化方法[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 67 -80 .
[9] 陈秀锋, 王成鑫, 赵凤阳, 杨凯, 谷可鑫. 改进DQN算法的单点交叉口信号控制方法[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 81 -88 .
[10] 李欣, 宁静. 基于时空特征融合的电力系统暂态稳定评估[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 89 -100 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发