|
广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (6): 117-125.doi: 10.16088/j.issn.1001-6600.2023111701
程灿儿1,2, 黄川洋1,2, 张秋楠1,2, 张钊1,2, 杨军3, 童章伟4, 邵伟佳1,2, 唐剑1,2, 邵来鹏1,2, 胡君辉1,2, 王咏梅1,2*
CHENG Can’er1,2, HUANG Chuanyang1,2, ZHANG Qiunan1,2, ZHANG Zhao1,2, YANG Jun3, TONG Zhangwei4, SHAO Weijia1,2, TANG Jian1,2, SHAO Laipeng1,2, HU Junhui1,2, WANG Yongmei1,2*
摘要: 传感器种类繁多,光纤传感器以其小型化、性能优良等特点从众多传感器中脱颖而出。基于此,本文以表面等离子体共振理论为支撑点,使用有限元方法进行计算,设计并研究一种D型双凹槽单通道光子晶体光纤高折射率传感器。研究结果表明,在最优结构参数下该传感器传感效果良好,在1.32~1.41的宽检测范围内,最大灵敏度达到16 200 nm/RIU,最大品质因数可达255.92 RIU-1。由此可知,本文所设计的传感器符合现代化发展需求,有望在医疗检测、生物传感等多方面实现应用价值。
中图分类号: TP212
[1] WOOD R W. XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1902, 4(21): 396-402. DOI: 10.1080/14786440209462857. [2] FANO U. The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves)[J]. Journal of the Optical Society of America, 1941, 31(3): 213-222. DOI: 10.1364/JOSA.31.000213. [3] 段媛媛,杨成丽,周建刚,等.基于SPR生物传感器的免疫学检测[J].生物技术通讯,2002,13(4):264-268. DOI:10.3969/j.issn.1009-0002.2002.04.005. [4] KNIGHT J C, BROENG J, BIRKS T A, et al. Photonic band gap guidance in optical fibers[J]. Science, 1998, 282(5393): 1476-1478. DOI: 10.1126/science.282.5393.1476. [5] BIRKS T A, KNIGHT J C, RUSSELL P S. Endlessly single-mode photonic crystal fiber[J]. Optics Letters, 1997, 22(13): 961-963. DOI: 10.1364/ol.22.000961. [6] AHMED R, KHAN M, AHMMED R, et al. Design, simulation & optimization of 2D photonic crystal power splitter[J]. Optics and Photonics Journal, 2013, 3(2A): 13-19. DOI: 10.4236/opj.2013.32A002. [7] ZHAO Y, DENG Z Q, LI J. Photonic crystal fiber based surface plasmon resonance chemical sensors[J]. Sensors and Actuators B: Chemical, 2014, 202: 557-567. DOI: 10.1016/j.snb.2014.05.127. [8] TONG K, CAI Z Y, WANG J, et al. D-type photonic crystal fiber sensor based on metal nanowire array[J]. Optik, 2020, 218: 165010. DOI: 10.1016/j.ijleo.2020.165010. [9] FAN B, ZHANG T M X, HE S M, et al. Chirality parameter sensing based on surface plasmon resonance D-type photonic crystal fiber sensors[J]. Applied Optics, 2021, 60(12): 3314-3321. DOI: 10.1364/AO.420577. [10] LIU W, HU C J, ZHOU L, et al. A square-lattice D-shaped photonic crystal fiber sensor based on SPR to detect analytes with large refractive indexes[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 138: 115106. DOI: 10.1016/J.PHYSE.2021.115106. [11] JABIR J N. Comparison of high-sensitivity plasmonic temperature sensor based on photonic crystal fiber[J]. Plasmonics, 2022, 17(5): 2245-2253. DOI: 10.1007/S11468-022-01714-8. [12] ZHOU C, ZHANG Y T, LI X, et al. Photonic crystal fiber sensor based on hybrid mechanisms: Plasmonic and directional resonance coupling[J]. Optics Communications, 2012, 285(9): 2466-2471. DOI: 10.1016/j.optcom.2012.01.031. [13] ZHANG J G, YUAN J H, QU Y W, et al. A novel surface plasmon resonance-based photonic crystal fiber refractive index sensor with an ultra-wide detection range[J]. Optik, 2022, 259: 168977. DOI: 10.1016/j.ijleo.2022.168977. [14] 刘庆敏,侯尚林,雷景丽.D型表面等离子共振光纤液体生物传感器设计与分析(英文)[J].光子学报,2022,51(9):215-224. [15] CHEN X, BU W Y, WU Z F, et al. Near-infrared long-range surface plasmon resonance in a D-shaped honeycomb microstructured optical fiber coated with Au film[J]. Optics Express, 2021, 29(11): 16455-16468. DOI: 10.1364/OE.419585. [16] MASHRAFI M, KAMRUNNAHAR Q M, HAIDER F, et al. Bio-inspired butterfly core-shaped photonic crystal fiber-based refractive index sensor[J]. OSA Continuum, 2021, 4(4): 1179-1190. DOI: 10.1364/OSAC.416953. [17] GUPTA A, SINGH T, SINGH R K, et al. Numerical analysis of coronavirus detection using photonic crystal fibre-based SPR sensor[J]. Plasmonics, 2023, 18(2): 577-585. DOI: 10.1007%2Fs11468-022-01761-1. [18] LIU C, YANG L, LIU Q, et al. Analysis of a surface plasmon resonance probe based on photonic crystal fibers for low refractive index detection[J]. Plasmonics, 2018, 13(3): 779-784. DOI: 10.1007/s11468-017-0572-7. [19] PAUL D, BISWAS R. [INVITED] Highly sensitive LSPR based photonic crystal fiber sensor with embodiment of nanospheres in different material domain[J]. Optics & Laser Technology, 2018, 101: 379-387. DOI: 10.1016/j.optlastec.2017.11.040. [20] LI C G, YAN B, LIU JJ. Refractive index sensing characteristics in a D-shaped photonic quasi-crystal fiber sensor based on surface plasmon resonance[J]. Journal of the Optical Society of America A, 2019, 36(10): 1663-1668. DOI: 10.1364/JOSAA.36.001663. [21] ZHANG X, KANG H, WANG P, et al. Refractive index and temperature sensor based on dual-D-shapes photonic crystal fiber surface plasmon resonance[J]. The European Physical Journal Plus, 2022, 137(9): 1086. DOI: 10.1140/epjp/s13360-022-03299-x. [22] GUERREIRO A, SANTOS D F, BAPTISTA J M. New trends in the simulation of nanosplasmonic optical D-type fiber sensors[J]. Sensors, 2019, 19(8): 1772. DOI: 10.3390/s19081772. [23] LIU C, LÜ J W, LIU W, et al. Overview of refractive index sensors comprising photonic crystal fibers based on the surface plasmon resonance effect [Invited] [J].Chinese Optics Letters, 2021, 19(10): 102202. [24] 陆杭林,邵来鹏,张帆,等.光纤MZI传感器传感机理与传感应用研究进展[J].广西师范大学学报(自然科学版),2022,40(6):1-17.DOI:10.16088/j.issn.1001-6600.2022050501. [25] SINGH S, PRAJAPATI Y K. Highly sensitive dual-core symmetrical side-polished modified D-shaped SPR based PCF refractive index sensor with deeply etched micro openings[J]. Optik, 2021, 235: 166657. DOI: 10.1016/j.ijleo.2021.166657. [26] BING P B, SUI J L, WU G F, et al. Analysis of dual-channel simultaneous detection of photonic crystal fiber sensors[J]. Plasmonics, 2020, 15(4): 1071-1076. DOI: 10.1007/s11468-020-01131-9. [27] GU S F, SUN W, LI M, et al. Highly sensitive plasmonic refractive index sensor based on dual D-shaped photonic crystal fiber with aluminum nitride-silver films[J].Plasmonics, 2022, 17(3): 1129-1137. DOI: 10.1007/S11468-022-01609-8. [28] PAN H G, PAN F, ZHANGA A L, et al. Wide refractive index detection range surface plasmon resonance sensor based on D-shaped photonic crystal fiber[J]. Optical and Quantum Electronics, 2022, 54(6): 393. DOI: 10.1007/S11082-022-03805-6. [29] JAIN S, CHOUDHARY K, KUMAR S. Photonic crystal fiber-based SPR sensor for broad range of refractive index sensing applications[J]. Optical Fiber Technology, 2022, 73: 103030. DOI: 10.1016/j.yofte.2022.103030. [30] AN W, LI C, WANG D, et al. Design and analysis of a high-sensitivity fan-shaped photonic crystal fiber sensor based on surface plasmon resonance[J]. Optical and Quantum Electronics, 2023, 55(12): 1047. DOI: 10.1007/s11082-023-05249-y. [31] ZHANG S, WU B, GAO Z G, et al. A wide measurement range plasmonic refractive index sensor based on side-polished photonic crystal fiber[J]. Physica Scripta, 2023, 98(11): 115513. DOI: 10.1088/1402-4896/acfe4f. |
[1] | 凌湛钧, 李宏韬, 陆杭林, 付顾睿, 黄天启, 吕亮, 俞本立. 基于微纳光纤耦合器的折射率传感研究[J]. 广西师范大学学报(自然科学版), 2023, 41(3): 31-40. |
[2] | 陆杭林, 邵来鹏, 张帆, 唐剑, 黎远鹏, 王咏梅, 胡君辉. 光纤MZI传感器传感机理与传感应用研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(6): 1-17. |
[3] | 段美玲, 潘巨龙. 基于双向LSTM神经网络可穿戴跌倒检测研究[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 141-150. |
[4] | 海涛, 李娜娜, 周文杰, 陈娟, 宋敏. 基于LPWAN物联网的光伏温室智能监控系统设计[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 100-109. |
[5] | 滕志军, 吕金玲, 郭力文, 许媛媛. 基于改进粒子群算法的无线传感器网络覆盖策略[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 9-16. |
[6] | 肖发远,李好威. 基于模糊理论的无线传感器网络路由优化算法[J]. 广西师范大学学报(自然科学版), 2017, 35(1): 37-43. |
[7] | 黄恒杰. 传感器中基于连通支配集的区域覆盖控制算法[J]. 广西师范大学学报(自然科学版), 2016, 34(4): 19-25. |
[8] | 刘宏, 王其涛, 夏未君. 基于量子遗传算法的WSN三维定位方法[J]. 广西师范大学学报(自然科学版), 2015, 33(4): 49-54. |
[9] | 罗强, 胡三根, 臧晓冬, 龚华炜. 基于ZigBee技术的温室环境因子远程监控系统设计[J]. 广西师范大学学报(自然科学版), 2015, 33(3): 28-33. |
[10] | 岳才杰, 陈元琰, 朱新华. 一种有效的传感器网络区域查询算法[J]. 广西师范大学学报(自然科学版), 2015, 33(1): 52-58. |
[11] | 陈美娟, 李传起, 罗德俊, 陆叶. 单个LPFG实现溶液温度和折射率测量的两种方法[J]. 广西师范大学学报(自然科学版), 2014, 32(4): 1-5. |
[12] | 王剑, 黄植功, 许金海. 基于优化EKF的永磁同步电机转速估计[J]. 广西师范大学学报(自然科学版), 2014, 32(4): 11-17. |
[13] | 窦贤振, 徐晨, 左杨. 基于能量优先的WSN最优梯度路由协议[J]. 广西师范大学学报(自然科学版), 2013, 31(3): 157-163. |
[14] | 郑磊, 朱正礼, 侯迎坤. 基于改进的微粒群算法的WSN节点部署策略[J]. 广西师范大学学报(自然科学版), 2011, 29(4): 56-62. |
[15] | 柳相楠, 陈明, 冯国富, 池涛. 基于移动Agent的无线传感网络拓扑控制策略[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 215-218. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 179
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 63
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |