广西师范大学学报(自然科学版) ›› 2022, Vol. 40 ›› Issue (6): 1-17.doi: 10.16088/j.issn.1001-6600.2022050501

• 综述 •    下一篇

光纤MZI传感器传感机理与传感应用研究进展

陆杭林1,2, 邵来鹏1,3, 张帆4, 唐剑1,2, 黎远鹏1,2, 王咏梅1,2, 胡君辉1,2*   

  1. 1.广西师范大学物理科学与技术学院,广西桂林541004;
    2.广西核物理与核技术重点实验室(广西师范大学),广西桂林541004;
    3.深圳大学物理与光电工程学院,广东深圳518060;
    4.广东工业大学信息工程学院,广东广州510006
  • 收稿日期:2022-05-05 修回日期:2022-05-30 出版日期:2022-11-25 发布日期:2023-01-17
  • 通讯作者: 胡君辉(1980—),男,广西来宾人,广西师范大学教授,博导。hujh@mailbox.gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(62165002);广西重点研发计划(AB18221033);广西高等学校千名中青年骨干教师培育计划项目;广西高校中青年教师科研基础能力提升项目(2022KY0044)

Sensing Mechanism and Applications of Mach-Zehnder Interferometer Optical Fiber Sensors

LU Hanglin1,2, SHAO Laipeng1,3, ZHAN Fan4, TANG Jian1,2, LI Yuanpeng1,2, WANG Yongmei1,2, HU Junhui1,2*   

  1. 1. School of Physical Science and Technology, Gungxi Normal University, Guilin Guangxi 541004, China;
    2. Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology (Guangxi Normal University), Guilin Guangxi 541004, China;
    3. School of Physics and Optoelectronic Engineering, Shenzhen University,Shenzhen Guangdong 518060, China;
    4. School of Information Engineering,Guangdong University of Technology, Guangzhou Guangdong 510006, China
  • Received:2022-05-05 Revised:2022-05-30 Online:2022-11-25 Published:2023-01-17

摘要: 光纤马赫-曾德尔干涉仪(Mach-Zehnder interferometer,MZI)传感器基于模式干涉原理,通过监测目标对传感器模式干涉的影响来实现对目标物的传感与测量。本文阐述光纤MZI传感器的特点、传感机理、研制技术和传感应用,详细介绍光纤MZI传感器已有的主要制备方法,包括光纤错位熔接法、纤芯失配法、光纤侧边抛磨法和光纤拉锥法等,分析比较各种制备方法的适用性和局限性;系统综述光纤MZI传感器在温度、应变、液位、曲率、压力、折射率、双参量和生化监测等方面的传感应用及优缺点;最后对光纤MZI传感器的研究进行展望。

关键词: 光纤传感器, 马赫-曾德尔干涉仪, 模式干涉, 制备方法, 传感应用

Abstract: Mach-Zehnder Interferometer (MZI) optical fiber sensor is based on the principle of mode interference, which realizes the sensing and measurement by monitoring the influence of the target on the mode interference. This review expounds the characteristics, sensing mechanism, fabrication technology and sensing application of the MZI optical fiber sensor. The fabrication methods of MZI optical fiber sensor are introduced in detail, including optical fiber dislocation fusion method, fiber core mismatch method, optical fiber side polishing method and optical fiber taper method, etc. The applicability and limitations of the fabrication methods are analyzed and compared. The applications of MZI optical fiber sensor in temperature, strain, liquid level, curvature, pressure, refractive index, dual parameters and biochemical monitoring, as well as the merit and demerit of the sensor are systematically reviewed. Finally, the future development of MZI optical fiber sensors is prospected.

Key words: optical fiber sensor, Mach-Zehnder interferometer, mode interference, fabrication method, sensing application

中图分类号: 

  • TP212
[1] 王巍, 丁东发, 夏君磊. 干涉型光纤传感用光电子器件技术[M]. 北京: 科学出版社, 2012.
[2] ZHAO Y, ZHAO H, LV R Q, et al. Review of optical fiber Mach-Zehnder interferometers with micro-cavity fabricated by femtosecond laser and sensing applications[J]. Optics and Lasers in Engineering, 2019, 117: 7-20.
[3] LI L C, XIA L, XIE Z H, et al. All-fiber Mach-Zehnder interferometers for sensing applications[J]. Optics Express, 2012, 20(10): 11109-11120.
[4] PANG F F, LIU H H, GUO H R, et al. In-fiber Mach-Zehnder interferometer based on double cladding fibers for refractive index sensor[J]. IEEE Sensors Journal, 2011, 11(10): 2395-2400.
[5] LIU Y, PENG W, LIANG Y Z, et al. Fiber-optic Mach-Zehnder interferometric sensor for high-sensitivity high temperature measurement[J]. Optics Communications, 2013, 300: 194-198.
[6] BUTTER C D, HOCKER G B. Fiber optics strain gauge[J]. Applied Optics, 1978, 17(18): 2867-2869.
[7] CHEN X Y, CHEN H, WU R, et al. Simultaneous measurement of temperature and transversal loading by using a modified fiber Mach-Zehnder interferometer[J]. IEEE Sensors Journal, 2018, 18(7): 2776-2781.
[8] TIAN J J, LI Z G, SUN Y X, et al. High-sensitivity fiber-optic strain sensor based on the Vernier effect and separated Fabry-Perot interferometers[J]. Journal of Lightwave Technology, 2019, 37(21): 5609-5618.
[9] YU F D, XUE P, ZHENG J. Enhancement of refractive index sensitivity by bending a core-offset in-line fiber Mach-Zehnder interferometer[J]. IEEE Sensors Journal, 2019, 19(9): 3328-3334.
[10] ZHAO D L, WU Y F, WU J. Pressure and temperature sensor based on fiber-optic Fabry-Perot interferometer by phase demodulation[J]. IEEE Access, 2019, 7: 179532-179537.
[11] CAO R T, YANG Y, WANG M H, et al. Multiplexable intrinsic Fabry-Perot interferometric fiber sensors for multipoint hydrogen gas monitoring[J]. Optics Letters, 2020, 45(11): 3163-3166.
[12] CHEN K, YANG B L, DENG H, et al. Simultaneous measurement of acoustic pressure and temperature using a Fabry-Perot interferometric fiber-optic cantilever sensor[J]. Optics Express, 2020, 28(10): 15050-15061.
[13] CUI Y, JIANG Y, LIU T M, et al. A dual-cavity Fabry-Perot interferometric fiber-optic sensor for the simultaneous measurement of high-temperature and high-gas-pressure[J]. IEEE Access, 2020, 8: 80582-80587.
[14] MARRUJO-GARCÍA S, HERNÁNDEZ-ROMANO I, TORRES-CISNEROS M, et al. Temperature-independent curvature sensor based on in-fiber Mach-Zehnder interferometer using hollow-core fiber[J]. Journal of Lightwave Technology, 2020, 38(15): 4166-4173.
[15] ZHANG J W, YANG J R, HOU L T, et al. Temperature compensated fiber-optic liquid level sensor by micro-sphere based in-line Michelson interferometer[J]. Optical Fiber Technology, 2022, 68: 102817.
[16] ZAHID M N, JIANG J L, RIZVI S. Reflectometric and interferometric fiber optic sensor’s principles and applications[J]. Frontiers of Optoelectronics, 2019, 12(2): 215-226.
[17] LU H L, NIU Y L, YANG L, et al. Liquid level sensor based on PM-MD fiber structure loop mirror[J]. Optical Fiber Technology, 2021, 62: 102464.
[18] LI C, NING T G, LI J, et al. Fiber-optic laser sensor based on all-fiber multipath Mach-Zehnder interferometer[J]. IEEE Photonics Technology Letters, 2016, 28(18): 1908-1911.
[19] ZHAO Y, LI X G, CAI L, et al. Refractive index sensing based on photonic crystal fiber interferometer structure with up-tapered joints[J]. Sensors and Actuators B: Chemical, 2015, 221: 406-410.
[20] YAN H T, LI P F, ZHANG H J, et al. A micro S-shaped optical fiber temperature sensor based on dislocation fiber splice[J]. Photonic Sensors, 2017, 7(4): 372-376.
[21] 苏达顺, 马宽明, 孙立朋, 等. 基于大偏置量熔接的反射式光纤型干涉仪的折射率传感特性[J]. 激光与光电子学进展, 2018, 55(8): 080603.
[22] 朱琳, 冯国英, 周昊, 等. 基于自组装膜的光纤错位型氨气传感器[J]. 强激光与粒子束, 2021, 33(3): 039002.
[23] 高朋, 郑晓琳, 刘莹, 等. Z型SPS光纤折射率传感器[J]. 沈阳师范大学学报(自然科学版), 2021, 39(6): 506-510.
[24] 周兆帅, 董新永, 邵理阳. 错位熔接长周期光纤光栅横向压力传感器[J]. 中国计量学院学报, 2014, 25(3): 319-322.
[25] 胡义慧, 孙四梅, 毛敏, 等. 基于多芯光纤错位熔接结构的温度与折射率同时测量传感器[J]. 光电子·激光, 2018, 29(3): 243-248.
[26] GONG T Y, LIU X Q, WANG Z, et al. Ultrasensitivity steel surface corrosion noncontacted monitoring based on a mismatching fused Mach-Zehnder interferometric fiber sensor[J]. IEEE Sensors Journal, 2020, 20(21): 12732-12738.
[27] VILLATORO J, MONZON-HERNANDEZ D. Low-cost optical fiber refractive-index sensor based on core diameter mismatch[J]. Journal of Lightwave Technology, 2006, 24(3): 1409-1413.
[28] RONG Q Z, QIAO X G, WANG R H, et al. High-sensitive fiber-optic refractometer based on a core-diameter-mismatch Mach-Zehnder interferometer[J]. IEEE Sensors Journal, 2012, 12(7): 2501-2505.
[29] NGUYEN L V, HWANG D, MOON S, et al. High temperature fiber sensor with high sensitivity based on core diameter mismatch[J]. Optics Express, 2008, 16(15): 11369-11375.
[30] ZHANG L J, XIONG Y L, REN N K, et al. Design and temperature sensing performance of a modal interference sensor with the core mismatch-offset structure[J]. Journal of Russian Laser Research, 2021, 42(5): 569-579.
[31] ZHENG Y Y, YANG X Z, FENG W L, et al. Optical fiber refractive index sensor based on SMF-TCF-NCF-SMF interference structure[J]. Optik, 2021, 226(Part 2): 165900.
[32] LI C, WANG D, AN W, et al. High fringe visibility fiber sensor based on MMF-FCF-MMF structure for dual-parameter detection[J]. Optical Fiber Technology, 2022, 68: 102809.
[33] TSENG S M, CHEN C L. Side-polished fibers[J]. Applied Optics, 1992, 31(18): 3438-3447.
[34] BERGH R A, KOTLER G, SHAW H J. Single-mode fibre optic directional coupler[J]. Electronics Letters, 1980, 16(7): 260-261.
[35] 卓琳青, 唐洁媛, 朱文国, 等. 基于侧边抛磨光纤的传感技术研究综述[J]. 应用科学学报, 2021, 39(5): 733-746.
[36] DONG J L, ZHANG Y X, WANG Y J, et al. Side-polished few-mode fiber based surface plasmon resonance biosensor[J]. Optics Express, 2019, 27(8): 11348-11360.
[37] ZAKARIA R, ZAINUDDIN N A M, AHMAD FAHRI M A S, et al. High sensitivity refractive index sensor in long-range surface plasmon resonance based on side polished optical fiber[J]. Optical Fiber Technology, 2021, 61: 102449.
[38] TIEN C L, CHEN H W, LIU W F, et al. Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film[J]. Thin Solid Films, 2008, 516(16): 5360-5363.
[39] ZHAO J, CAO S Q, LIAO C R, et al. Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber[J]. Sensors and Actuators B: Chemical, 2016, 230: 206-211.
[40] ZHANG H, CHEN Y F, FENG X J, et al. Long-range surface plasmon resonance sensor based on side-polished fiber for biosensing applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(2): 1-9.
[41] LI Y X, PU S L, ZHAO Y L, et al. All-fiber-optic vector magnetic field sensor based on side-polished fiber and magnetic fluid[J]. Optics Express, 2019, 27(24): 35182-35188.
[42] LIU S H, CAO S Q, ZHANG Z, et al. Temperature sensor based on side-polished fiber SPR device coated with polymer[J]. Sensors, 2019, 19(19): 4063.
[43] HUANG Q D, ZHONG L X, DONG J L, et al. All-optical light manipulation based on graphene-embedded side-polished fiber[J]. Optics Letters, 2022, 47(6): 1478-1481.
[44] ZHUO L Q, LI D Q, CHEN W D, et al. High performance multifunction-in-one optoelectronic device by integrating graphene/MoS2 heterostructures on side-polished fiber[J]. Nanophotonics, 2022, 11(6): 1137-1147.
[45] 董航宇, 孙四梅, 江超, 等. 基于单模光纤拉锥构成的光纤折射率传感器[J]. 激光杂志, 2019, 40(6): 37-40.
[46] YUE C X, DING H, DING W, et al. Weakly-coupled multicore optical fiber taper-based high-temperature sensor[J]. Sensors and Actuators A: Physical, 2018, 280: 139-144.
[47] LI X G, CHEN N, ZHOU X, et al. In-situ DNA detection with an interferometric-type optical sensor based on tapered exposed core microstructured optical fiber[J]. Sensors and Actuators B: Chemical, 2022, 351: 130942.
[48] 董婧斐, 刘颖刚, 黄亮, 等. 一种熔融拉锥型折射率和温度传感器[J]. 压电与声光, 2021, 43(6): 766-770.
[49] 徐妍妍, 李俊, 李浩, 等. 基于拉锥七芯光纤的湿度传感器研究[J]. 中国激光, 2021, 48(23): 93-102.
[50] DING J F, ZHANG A P, SHAO L Y, et al. Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor[J]. IEEE Photonics Technology Letters, 2005, 17(6): 1247-1249.
[51] KIEU K Q, MANSURIPUR M. Biconical fiber taper sensors[J]. IEEE Photonics Technology Letters, 2006, 18(21): 2239-2241.
[52] FU X H, WANG Y F, RAN R, et al. A multi-directional magnetic field sensor based on tapered few mode fiber and magnetic fluid[J]. Optik, 2021, 240: 166817.
[53] MA J W, WU S, CHENG H H, et al. Sensitivity-enhanced temperature sensor based on encapsulated S-taper fiber Modal interferometer[J]. Optics & Laser Technology, 2021, 139: 106933.
[54] GONG Z D, LEI Y S, WANG Z W, et al. A taper-in-taper structured interferometric optical fiber sensor for Cu2+ ion detection[J]. Sensors, 2022, 22(7): 2709.
[55] WU J X, MIAO Y P, SONG B B, et al. Low temperature sensitive intensity-interrogated magnetic field sensor based on modal interference in thin-core fiber and magnetic fluid[J]. Applied Physics Letters, 2014, 104(25): 252402.
[56] 金龙, 张伟刚, 涂勤昌, 等. 干涉技术在光纤传感器设计中的应用[J]. 激光与光电子学进展, 2004, 41(7): 51-56, 8, 23.
[57] WANG Y, LI Y H, LIAO C R, et al. High-temperature sensing using miniaturized fiber in-line Mach-Zehnder interferometer[J]. IEEE Photonics Technology Letters, 2010, 22(1): 39-41.
[58] GAO S, JI C K, NING Q Y, et al. High-sensitive Mach-Zehnder interferometric temperature fiber-optic sensor based on core-offset splicing technique[J]. Optical Fiber Technology, 2020, 56: 102202.
[59] ZHANG F, YUE Y L, HU J H. Highly sensitive temperature sensor based on multicore fiber-polarization maintaining fiber loop mirror[J]. IEEE Sensors Journal, 2020, 20(3): 1315-1321.
[60] SHAO L P, HU J H, LU H L, et al. High-sensitivity temperature sensor based on polarization maintaining fiber sagnac loop[J]. Photonic Sensors, 2019, 9(1): 25-32.
[61] NIZAMANI B, ABDUL KHUDUS M I M, HANAFI E, et al. D-shape fiber coated with indium tin oxide for temperature sensor application[J]. IOP Conference Series: Materials Science and Engineering, 2020, 854: 012016.
[62] MA Y W, WANG S J, LI X Y, et al. Torsion and temperature sensor based on polished MSM structure[J]. IEEE Photonics Technology Letters, 2020, 32(17): 1117-1120.
[63] 王义平, 唐剑, 尹国路, 等. 光纤光栅制作方法及传感应用[J]. 振动、测试与诊断, 2015, 35(5): 809-819.
[64] LIU S T, LIU Q W, ZHAO S X, et al. Pico-strain resolution fiber-optic sensor with white-light interferometry[J]. Optics Letters, 2022, 47(9): 2226-2229.
[65] SIRKIS J S, TAYLOR C E. Interferometric-fiber-optic strain sensor[J]. Experimental Mechanics, 1988, 28(2): 170-176.
[66] DONG X R, DU H F, SUN X Y, et al. A novel strain sensor with large measurement range based on all fiber Mach-Zehnder interferometer[J]. Sensors, 2018, 18(5): 1549.
[67] DONG L G, GANG T T, BIAN C, et al. A high sensitivity optical fiber strain sensor based on hollow core tapering[J]. Optical Fiber Technology, 2020, 56: 102179.
[68] LIU C X, SUN D X, YANG J R, et al. Ultra-sensitive intensity modulated strain sensor by tapered thin-core fiber based modal interferometer[J]. Photonics, 2021, 8(9): 372.
[69] ZHANG H, ZHANG M, KANG J, et al. High sensitivity fiber-optic strain sensor based on modified microfiber-assisted open-cavity Mach-Zehnder interferometer[J]. Journal of Lightwave Technology, 2021, 39(13): 4556-4563.
[70] XIE M Y, GONG H P, ZHANG J, et al. Optical fiber liquid level sensor realized by cascading two spherical-shape structures[J]. Optik, 2019, 191: 10-14.
[71] SHAO M, HAN L, LIANG J J, et al. A high-sensitivity liquid level sensor based on single-mode taper-thin core taper single-mode fiber structure[J]. Measurement Science and Technology, 2020, 31(10): 105101.
[72] SUN T T, LIU Z G, LIU Y, et al. All-fiber liquid-level sensor based on in-line MSM fiber structure[J]. Photonic Sensors, 2021, 11(3): 291-297.
[73] DENG S J, YU F D, DENG H C, et al. Twisted tapered plastic optical fibers for continuous liquid level sensing[J]. Optical Fiber Technology, 2020, 59: 102318.
[74] WANG Q, LIU Y. Review of optical fiber bending/curvature sensor[J]. Measurement, 2018, 130: 161-176.
[75] 陆杭林, 胡君辉. 基于SPS光纤结构的高灵敏度曲率传感器[J]. 激光与光电子学进展, 2019, 56(8): 080601.
[76] WANG Q, LIU Y. Optical fiber curvature sensor based on MMF-SCF-MMF structure[J]. Optical Fiber Technology, 2018, 43: 1-5.
[77] 张帆, 史新华, 胡君辉. 基于七芯光纤和保偏光纤结构的光纤曲率传感测量[J]. 激光与光电子学进展, 2020, 57(17): 170605.
[78] YANG W T, WANG W, CHEN H B, et al. Fiber-optic multimode interferometric curvature sensor based on small-inner-diameter hollow core fiber[J]. Optical Fiber Technology, 2021, 67: 102749.
[79] ZHANG C, ZHAO J F, MIAO C Y, et al. High-sensitivity all single-mode fiber curvature sensor based on bulge-taper structures modal interferometer[J]. Optics Communications, 2015, 336: 197-201.
[80] LI J, LIU B, LIU J, et al. Low-cost wearable device based D-shaped single mode fiber curvature sensor for vital signs monitoring[J]. Sensors and Actuators A: Physical, 2022, 337: 113429.
[81] FIELDS J N, ASAWA C K, RAMER O G, et al. Fiber optic pressure sensor[J]. The Journal of the Acoustical Society of America, 1980, 67(3): 816-818.
[82] LIN H F, LIU F F, DAI Y T, et al. Cascaded fiber Mach-Zehnder interferometers for sensitivity-enhanced gas pressure measurement[J]. IEEE Sensors Journal, 2019, 19(7): 2581-2586.
[83] ZHAO Y J, LIN H F, ZHOU C M, et al. Cascaded Mach-Zehnder interferometers with Vernier effect for gas pressure sensing[J]. IEEE Photonics Technology Letters, 2019, 31(8): 591-594.
[84] LU H L, NIU Y L, TANG J, et al. High sensitivity pressure sensor based on a simple SPS fiber loop mirror[J]. Optical and Quantum Electronics, 2021, 53(8): 423.
[85] ZHAO Y J, LIU J X, LI H, et al. An ultra-sensitive gas pressure sensor based on tapered fiber coated with PDMS film working at TAP[J]. Optics & Laser Technology, 2022, 151: 107998.
[86] JOE H E, YUN H, JO S H, et al. A review on optical fiber sensors for environmental monitoring[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2018, 5(1): 173-191.
[87] KHANSILI N, RATTU G, KRISHNA P M. Label-free optical biosensors for food and biological sensor applications[J]. Sensors and Actuators B: Chemical, 2018, 265: 35-49.
[88] MIRANDA B, REA I, DARDANO P, et al. Recent advances in the fabrication and functionalization of flexible optical biosensors: toward smart life-sciences applications[J]. Biosensors, 2021, 11(4): 107.
[89] RAVINDRAN N, KUMAR S, YASHINI M, et al. Recent advances in surface plasmon resonance (SPR) biosensors for food analysis: a review[J/OL]. Critical Reviews in Food Science and Nutrition: 1-23(2021-07-30)[2022-05-30]. https://www.tandfonline.com/doi/citedby/10.1080/10408398.2021.1958745?scroll=top&needAccess=true.
[90] KUMAR A, VERMA P, JINDAL P. Photonic crystal fiber based refractive index sensor for cholesterol sensing in far infrared region[M]// VERMA P, CHARAN C, FERNANDO X, et al. Advances in Data Computing, Communication and Security. Singapore: Springer, 2022: 533-542.
[91] YU F D, XUE P, ZHAO X W, et al. Investigation of an in-line fiber Mach-Zehnder interferometer based on peanut-shape structure for refractive index sensing[J]. Optics Communications, 2019, 435: 173-177.
[92] ZHOU X, LI X G, YAN X, et al. An ultra-high sensitivity optical fiber refractive index sensor based on plasmonic Mach-Zehnder interferometer[J]. IEEE Photonics Journal, 2021, 13(4): 4800207.
[93] ZHAO Y M, TONG Z R, ZHANG W H, et al. Refractive index Mach-Zehnder interferometer sensor based on tapered no-core fiber[J]. Laser Physics, 2021, 31(4): 045101.
[94] ZENG L, DONG X R, SUN X Y, et al. Highly sensitive refractive index sensing based on PCF modal interferometer[J]. Optik, 2022, 251: 168360.
[95] MENG H Y, SHEN W, ZHANG G B, et al. Michelson interferometer-based fiber-optic sensing of liquid refractive index[J]. Sensors and Actuators B: Chemical, 2011, 160(1): 720-723.
[96] LI X F, SHAO Y J, YU Y, et al. A highly sensitive fiber-optic Fabry-Perot interferometer based on internal reflection mirrors for refractive index measurement[J]. Sensors, 2016, 16(6): 794.
[97] AHMED F, AHSANI V, JO S, et al. Measurement of in-fiber refractive index change using a Mach-Zehnder interferometer[J]. IEEE Photonics Technology Letters, 2019, 31(1): 74-77.
[98] LIAO Y P, WANG H C, WANG S S, et al. Dual-path Mach-Zehnder interferometers with unequal geometrical path length for ultrasensitive refractive index sensing[J]. Journal of Lightwave Technology, 2021, 39(8): 2565-2572.
[99] YANG T Y, FENG Y, TANG M D, et al. MZI interferometric fiber optic temperature sensor based on MFC[J/OL]. Microwave and Optical Technology Letters: 1-7(2022-04-03)[2022-05-30]. https://doi.org/10.1002/mop.33250.
[100] 丁子平, 谢应茂, 曾泽楷, 等. 圆形双折射多孔光纤折射率传感器研究[J]. 赣南师范大学学报, 2021, 42(3): 49-52.
[101] 杨宏艳, 刘孟银, 李叶柯, 等. 高灵敏度多模干涉-异质无芯光纤折射率传感器[J]. 半导体光电, 2020, 41(5): 652-657.
[102] LU H L, YUE Y L, DU J, et al. Temperature and liquid refractive index sensor using P-D fiber structure-based Sagnac loop[J]. Optics Express, 2018, 26(15): 18920-18927.
[103] ZHANG F, XU R H, WEI J P, et al. In-line Mach-Zehnder interferometer for simultaneous measurement of temperature and directional torsion[J]. Optik, 2021, 226(Part 1): 165497.
[104] LI Y C, SONG Z, WEI J P, et al. Fiber in-line Mach-Zehnder interferometer for simultaneous measurement of transverse loading and temperature based on multi-core fiber[J]. Optics & Laser Technology, 2021, 143: 107354.
[105] LI Y C, SONG Z, PAN J, et al. In-line reflected fiber sensor for simultaneous measurement of temperature and liquid level based on tapered few-mode fiber[J]. Optics Express, 2022, 30(5): 7870-7882.
[106] CHEN T, CHEN R, LU P, et al. Tapered fibre Mach-Zehnder interferometer for simultaneous measurement of liquid level and temperature[J]. Electronics Letters, 2011, 47(19): 1093-1095.
[107] SUN L L, QIN J, TONG Z R, et al. Simultaneous measurement of refractive index and temperature based on down-taper and thin-core fiber[J]. Optics Communications, 2018, 426: 506-510.
[108] DAMBORSKÝ P, ŠVITEL J, KATRLÍK J. Optical biosensors[J]. Essays in Biochemistry, 2016, 60(1): 91-100.
[109] SINGH R K, LOHIA P, DWIVEDI D K. Fiber optic biosensors: types, optical parameters, applications and future scope[J]. AIP Conference Proceedings, 2020, 2220(1): 140051.
[110] KAUSHIK S, TIWARI U K, DEEP A, et al. Two-dimensional transition metal dichalcogenides assisted biofunctionalized optical fiber SPR biosensor for efficient and rapid detection of bovine serum albumin[J]. Scientific Reports, 2019, 9(1): 6987.
[111] DUAN S X, WANG B, QIAO M Q, et al. Hydrophobin HGFI-based fibre-optic biosensor for detection of antigen-antibody interaction[J]. Nanophotonics, 2020, 9(1): 177-186.
[112] DENG H T, CHEN X M, HUANG Z L, et al. Optical fiber based Mach-Zehnder interferometer for APES detection[J]. Sensors, 2021, 21(17): 5870.
[113] LU H L, LIU R J, LIU P Y, et al. Au-NPs signal amplification ultra-sensitivity optical microfiber interferometric biosensor[J]. Optics Express, 2021, 29(9): 13937-13948.
[114] LI M Y, SINGH R, MARQUES C, et al. 2D material assisted SMF-MCF-MMF-SMF based LSPR sensor for creatinine detection[J]. Optics Express, 2021, 29(23): 38150-38167.
[115] KAUR B, KUMAR S, KAUSHIK B K. 2D materials-based fiber optic SPR biosensor for cancer detection at 1550 nm[J]. IEEE Sensors Journal, 2021, 21(21): 23957-23964.
[116] WANG Y, SINGH R, CHAUDHARY S, et al. 2-D nanomaterials assisted LSPR MPM optical fiber sensor probe for cardiac troponin I detection[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 950460.
[1] 陈美娟, 李传起, 罗德俊, 陆叶. 单个LPFG实现溶液温度和折射率测量的两种方法[J]. 广西师范大学学报(自然科学版), 2014, 32(4): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发