|
广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (6): 158-168.doi: 10.16088/j.issn.1001-6600.2022123001
杨文静1, 邓钰莲1, 陈铸鑫1, 陶阿凤1, 韦力心1, 吴金燕1, 田翼豪1, 宿程远1,2*
YANG Wenjing1, DENG Yulian1, CHEN Zhuxin1, TAO Afeng1, WEI Lixin1, WU Jinyan1, TIAN Yihao1, SU Chengyuan1,2*
摘要: 污水处理中抗生素类污染物的存在可能会对系统中微生物活性产生影响,而微生物活性直接影响系统除COD和除磷的效果。本文研究环丙沙星(CIP)对升流式厌氧污泥床(UASB)处理含磷废水的运行效能及其微生物群落响应的影响, 对COD、 总磷和磷酸盐去除率、 相关酶活性以及微生物群落结构等进行了探讨。 结果表明: 未投加CIP时,UASB反应器对含磷废水COD去除率稳定在98%左右,当CIP增大到10 mg/L时,COD平均去除率下降到63.1%,总磷去除率呈现下降趋势,对磷化氢的浓度影响较大;LB-EPS三维荧光图谱中出现了色氨酸蛋白及辅酶F420有关的特征峰,TB-EPS出现了类腐殖酸的特征峰。在CIP胁迫下,Chloroflexi是细菌中主要的优势菌门,进水CIP浓度为3、5和10 mg/L时,其相对丰度分别为43.13%、44.48%、39.96%;甲烷杆菌属Methanobacterium和甲烷丝菌属Methanothrix是古菌的优势菌属,从而保证了UASB反应器的有效运行。KEGG功能分析表明,古菌与细菌主要以碳水化合物代谢和能量代谢为主,提高进水CIP浓度后,膜运输的丰度降低较大,由10.15%下降到9.31%,且增加CIP浓度对古菌的影响明显。
中图分类号: X703.1
[1] 罗丽芳. 污水生物脱氮除磷研究进展[J]. 生物化工, 2021, 7(2): 137-141. DOI: 10.3969/j.issn.2096-0387.2021.02.040. [2] 卢宇翔, 农志文, 宿程远, 等. 微曝气-ABR处理养猪废水及微生物群落分布[J]. 广西师范大学学报(自然科学版), 2018, 36(4): 90-98. DOI: 10.16088/j.issn.1001-6600.2018.04.012. [3] 张佩兰. 厌氧生物除磷及其微生物种群结构特性的研究[D]. 广州: 广州大学, 2011. [4] DÉVAI I, FELFÖLDY L, WITTNER I, et al. Detection of phosphine: new aspects of the phosphorus cycle in the hydrosphere[J]. Nature, 1988, 333: 343-345. DOI: 10.1038/333343a0. [5] KOVALAKOVA P, CIZMAS L, MCDONALD T J, et al. Occurrence and toxicity of antibiotics in the aquatic environment: a review[J]. Chemosphere, 2020, 251: 126351. DOI: 10.1016/j.chemosphere.2020.126351. [6] TANG T T, LIU M, DU Y, et al. Deciphering the internal mechanisms of ciprofloxacin affected anaerobic digestion, its degradation and detoxification mechanism[J]. Science of the Total Environment, 2022, 842: 156718. DOI: 10.1016/j.scitotenv.2022.156718. [7] YI K X, WANG D B, YANG Q, et al. Effect of ciprofloxacin on biological nitrogen and phosphorus removal from wastewater[J]. Science of the Total Environment, 2017, 605: 368-375. DOI: 10.1016/j.scitotenv.2017.06.215. [8] 邹高龙, 刘志文, 董洁平, 等. 环丙沙星在污水处理过程中的迁移转化及对污水生物处理的影响[J]. 环境科学学报, 2019, 39(2): 308-317. DOI: 10.13671/j.hjkxxb.2018.0335. [9] MAI D T, STUCKEY D C, OH S. Effect of ciprofloxacin on methane production and anaerobic microbial community[J]. Bioresource Technology, 2018, 261: 240-248. DOI: 10.1016/j.biortech.2018.04.009. [10] CHEN H B, ZENG X N, ZHOU Y Y, et al. Influence of roxithromycin as antibiotic residue on volatile fatty acids recovery in anaerobic fermentation of waste activated sludge[J]. Journal of Hazardous Materials, 2020,394: 122570. DOI: 10.1016/j.jhazmat.2020.122570. [11] 唐琳钦, 王安柳, 宿程远, 等. 不同氮源对好氧颗粒污泥理化特性及微生物群落影响[J]. 广西师范大学学报(自然科学版), 2021, 39(2): 144-153. DOI: 10.16088/j.issn.1001-6600.2020061301. [12] YAN H, LI J Z, MENG J, et al. Effects of reflux ratio on the anaerobic sludge and microbial social behaviors in an expanded granular sludge bed reactor: from the perspective of acyl-homoserine lactones-mediated quorum sensing[J]. Bioresource Technology, 2021, 337: 125360. DOI: 10.1016/j.biortech.2021.125360. [13] FAN Y M, LV M Y, NIU X J, et al. The key step of gaseous phosphorus release in anaerobic digestion[J]. Process Safety and Environmental Protection, 2020, 137: 238-245. DOI: 10.1016/j.psep.2020.02.035. [14] YANG F X, ZHANG C S, RONG H W, et al. Research progress and application prospect of anaerobic biological phosphorus removal[J]. Applied Microbiology and Biotechnology, 2019, 103: 2133-2139. DOI: 10.1007/s00253-019-09634-0. [15] 樊仪旻. 厌氧消化微生物产磷化氢的机理研究[D]. 广州: 华南理工大学, 2021. [16] LU M Q, NIU X J, CHEN W Y, et al. Phosphine production in anaerobic wastewater treatment under tetracycline antibiotic pressure[J]. Journal of Enviromental Sciences, 2018, 69: 239-250. DOI: 10.1016/j.jes.2017.10.018. [17] NIU X J, WEI A S, LI Y D, et al. Phosphine in paddy fields and the effects of environmental factors[J]. Chemosphere, 2013, 93: 1942-1947. DOI: 10.1016/j.chemosphere.2013.06.078. [18] 周曼, 邓良伟, 杨红男, 等. 鸡粪中温干式沼气发酵启动阶段温度变化对产气性能的影响[J]. 农业环境科学学报, 2018, 37(8): 1785-1792. DOI: 10.11654/jaes.2018-0415. [19] LIU W, NIU X J, CHEN W Y, et al. Effects of applied potential on phosphine formation in synthetic wastewater treatment by microbial electrolysis cell (MEC)[J]. Chemosphere, 2017, 173: 172-79. DOI: 10.1016/j.chemosphere.2017.01.006. [20] YU H R, LAI B Y, YANG H Y, et al. In situ probing methanogenesis in anaerobic wastewater treatment using front-face excitation-emission matrix (FF-EEM) fluorescence[J]. Journal of Cleaner Production, 2023, 387: 135734. DOI: 10.1016/j.jclepro.2022.135734 . [21] 郭博文, 许国芹, 柳静, 等. 厌氧发酵过程中辅酶F420浓度与产甲烷能力关系探究[J]. 云南师范大学学报(自然科学版), 2022, 42(6): 5-8. DOI: 10.7699/j.ynnu.ns-2022-068. [22] SHAO Y X, ZHANG H X, BUCHANAN I, et al. Comparison of extracellular polymeric substance (EPS) in nitrification and nitritation bioreactors[J]. International Biodeterioration & Biodegradation, 2019, 143: 104713. DOI: 10.1016/j.ibiod.2019.06.001. [23] STRIETH D, SCHWARZ A, STIEFELMAIER J, et al. New procedure for separation and analysis of the main components of cyanobacterial EPS[J]. Journal of Biotechnology, 2021, 328: 78-86. DOI: 10.1016/j.jbiotec.2021.01.007. [24] WANG T, HUANG Z X, RUAN W Q, et al. Insights into sludge granulation during anaerobic treatment of high-strength leachate via a full-scale IC reactor with external circulation system[J]. Journal of Environmental Sciences, 2018, 64: 227-234. DOI: 10.1016/j.jes.2017.06.024. [25] YIN Y J, SUN J, LIU F Y, et al. Effect of nitrogen deficiency on the stability of aerobic granular sludge[J]. Bioresource Technology, 2019, 275: 307-313. DOI: 10.1016/j.biortech.2018.12.069. [26] ZHANG H Q, JIA Y Y, KHANAL S K, et al. Understanding the role of extracellular polymeric substances on ciprofloxacin adsorption in aerobic sludge, anaerobic sludge, and sulfate-reducing bacteria sludge systems[J]. Environmental Science & Technology, 2018, 52: 6476-6486. DOI: 10.1021/acs.est.8b00568. [27] ZHANG S Q, ZHANG L Q, MADDELA N R, et al. Exposure to Cr(Ⅵ) affects partial denitrification process-nitrite accumulation, EPS characteristic and microbial community assembly[J]. Journal of Environmental Chemical Engineering, 2023, 11: 109001. DOI: 10.1016/j.jece.2022.109001. [28] MENG L W, WANG J C, LI X K, et al. Microbial community and molecular ecological network in the EGSB reactor treating antibiotic wastewater: response to environmental factors[J]. Ecotoxicology and Environmental Safety, 2021, 208: 111669. DOI: 10.1016/j.ecoenv.2020.111669. [29] NIU X J, WANG J F, WU H, et al. Matrix-bound phosphine in the paddy soils of South China and its relationship to environmental factors and bacterial composition[J]. Journal of Soils and Sediments, 2016, 16: 592-604. DOI: 10.1007/s11368-015-1258-4. [30] LI P S, CHEN Q, DONG H, et al. Effect of applying potentials on anaerobic digestion of high salinity organic wastewater[J]. Science of the Total Environment, 2022, 822: 153416. DOI: 10.1016/j.scitotenv.2022.153416. [31] HE L S, LI L H, YING L, et al.Bioaugmentation with methanogenic culture to improve methane production from chicken manure in batch anaerobic digestion[J]. Chemosphere, 2022, 303: 135127. DOI: 10.1016/j.chemosphere.2022.135127. [32] DAI X Y, SU C Y, CHEN Z X, et al. Sulfonamide and quinolone antibiotics contaminated wastewater treatment by constructed rapid infiltration: efficiency and microbial community structure[J]. Process Safety and Environmental protection, 2022, 161: 542-555. DOI: 10.1016/j.psep.2022.03.056. [33] TANG L Q, SU C Y, CHEN Y, et al. Influence of biodegradable polybutylene succinate and non-biodegradable polyvinyl chloride microplastics on anammox sludge: performance evaluation, suppression effect and metagenomic analysis[J]. Journal of Hazardous Materials, 2021, 401: 123337. DOI: 10.1016/j.jhazmat.2020.123337. |
[1] | 覃容华, 宿程远, 陆欣雅, 陈政鹏, 周一杰, 先云川. Cr(Ⅵ)浓度对MFC-颗粒污泥耦合体系运行效能及微生态的影响[J]. 广西师范大学学报(自然科学版), 2023, 41(3): 242-254. |
[2] | 唐琳钦, 王安柳, 宿程远, 邓雪, 赵力剑, 先云川, 陈宇. 不同氮源对好氧颗粒污泥理化特性及微生物群落影响[J]. 广西师范大学学报(自然科学版), 2021, 39(2): 144-153. |
[3] | 谢秋丽, 唐玉娟, 苏厚人, 李光伟, 李良波, 韦继光, 黄荣韶. 不同株龄田七根际土壤微生物和酶活性变化[J]. 广西师范大学学报(自然科学版), 2017, 35(3): 149-156. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |