|
广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (3): 242-254.doi: 10.16088/j.issn.1001-6600.2022040403
• 研究论文 • 上一篇
覃容华1,2, 宿程远1,2*, 陆欣雅2, 陈政鹏2, 周一杰2, 先云川2
QIN Ronghua1,2, SU Chengyuan1,2*, LU Xinya2, CHEN Zhengpeng2, ZHOU Yijie2, XIAN Yunchuan2
摘要: Cr(Ⅵ)在水体环境中的污染不容忽视,探讨高效处理含Cr(Ⅵ)废水具有重要意义。本文建立了微生物燃料电池(MFC)-颗粒污泥耦合处理含Cr(Ⅵ)废水体系,考察了Cr(Ⅵ)浓度变化对该体系运行效能及微生态的影响。实验结果表明:当进水Cr(Ⅵ)浓度达到80 mg/L时,该体系对COD的去除率与Cr(Ⅵ)生物还原率分别达到92.71%和99.70%;循环伏安法(CV)显示其具有明显的还原峰,电化学阻抗谱(EIS)表明随着进水Cr(Ⅵ)浓度的增加,电荷转移内阻逐渐减小;进水Cr(Ⅵ)浓度增大到100 mg/L时,辅酶F420活性最低为0.026 2±0.000 2 mmol/g,INT-ETS活性明显下降,仅为5.20±0.23 μg/(mg·h);X射线光电子能谱特征峰结合能表明其主要由Cr2O3和Cr(OH)3组成;高通量测序分析表明,该体系中的优势菌群为Chloroflexi和Proteobacteria,进水Cr(Ⅵ)浓度增大至100 mg/L,属水平的优势菌群由以Methanothrix、Methanobacterium等产甲烷菌为主转变为以电活性细菌Geobacter和共养菌属Syntrophobacter为主,其最大相对丰度分别为21.24%、4.28%、5.60%和6.22%,表明增大Cr(Ⅵ)浓度会改变MFC-颗粒污泥耦合体系中的微生物群落结构,Cr(Ⅵ)可通过微生物菌群之间的联营机制进行还原。
中图分类号: X703.1
[1] UDDIN M J, JEONG Y K, LEE W. Microbial fuel cells for bioelectricity generation through reduction of hexavalent chromium in wastewater: a review[J]. International Journal of Hydrogen Energy, 2021, 46(20): 11458-11481. DOI: 10.1016/j.ijhydene.2020.06.134. [2] JIANG B, XIN S S, LIU Y J, et al. The role of thiocyanate in enhancing the process of sulfite reducing Cr(Ⅵ) by inhibiting the formation of reactive oxygen species[J]. Journal of Hazardous Materials, 2018, 343: 1-9. DOI: 10.1016/j.jhazmat.2017.09.015. [3] RENU K, CHAKRABORTY R, MYAKALA H, et al. Molecular mechanism of heavy metals (lead, chromium, arsenic, mercury, nickel and cadmium)-induced hepatotoxicity: a review[J]. Chemosphere, 2021, 271: 129735. DOI: 10.1016/j.chemosphere.2021.129735. [4] RAJAPAKSHA A U, SELVASEMBIAN R, ASHIQ A, et al. A systematic review on adsorptive removal of hexavalent chromium from aqueous solutions: recent advances[J]. Science of the Total Environment, 2022, 809: 152055. DOI: 10.1016/j.scitotenv.2021.152055. [5] ROWBOTHAM A L, LEVY L S, SHUKER L K. Chromium in the environment: an evaluation of exposure of the UK general population and possible adverse health effects[J]. Journal of Toxicology and Environmental Health. Part B, Critical Reviews, 2000, 3(3): 145-178. DOI: 10.1080/10937400050045255. [6] LI M, ZHOU S Q, XU Y T, et al. Simultaneous Cr(Ⅵ) reduction and bioelectricity generation in a dual chamber microbial fuel cell[J]. Chemical Engineering Journal, 2018, 334: 1621-1629. DOI: 10.1016/j.cej.2017.11.144. [7] MU C X, WANG L, WANG L. Removal of Cr(Ⅵ) and electricity production by constructed wetland combined with microbial fuel cell (CW-MFC): influence of filler media[J]. Journal of Cleaner Production, 2021, 320: 128860. DOI: 10.1016/j.jclepro.2021.128860. [8] LAI C Y, WEN L L, SHI L D, et al. Selenate and nitrate bioreductions using methane as the electron donor in a membrane biofilm reactor[J]. Environmental Science & Technology, 2017, 50(18): 10179-10186. DOI: 10.1021/acs.est.6b02807. [9] LUO J H, WU M X, LIU J Y, et al. Microbial chromate reduction coupled with anaerobic oxidation of methane in a membrane biofilm reactor[J]. Environment International, 2019, 130: 104926. DOI: 10.1016/j.envint.2019.104926. [10] ZHU C Y, WANG J F, LI Q S, et al. Integration of CW-MFC and anaerobic granular sludge to explore the intensified ammonification-nitrification-denitrification processes for nitrogen removal[J]. Chemosphere, 2021, 278: 130428. DOI: 10.1016/j.chemosphere.2021.130428. [11] DENG Q J, SU C Y, LU X Y, et al. Performance and functional microbial communities of denitrification process of a novel MFC-granular sludge coupling system[J]. Bioresource Technology, 2020, 306: 123173. DOI: 10.1016/j.biortech.2020.123173. [12] DONG B, XIA Z H, SUN J, et al. The inhibitory impacts of nano-graphene oxide on methane production from waste activated sludge in anaerobic digestion[J]. Science of the Total Environment, 2019, 646: 1376-1384. DOI: 10.1016/j.scitotenv.2018.07.424. [13] 尹军, 谭学军, 任南琪. 用TTC与INT-电子传递体系活性表征重金属对污泥活性的影响[J]. 环境科学, 2005, 26(1): 56-62. DOI: 10.13227/j.hjkx.2005.01.013. [14] 唐琳钦, 王安柳, 宿程远, 等. 不同氮源对好氧颗粒污泥理化特性及微生物群落影响[J]. 广西师范大学学报(自然科学版), 2021, 39(2): 144-153. DOI: 10.16088/j.issn.1001-6600.2020061301. [15] CHENG L, LI X C, JIANG R X, et al. Effects of Cr(Ⅵ) on the performance and kinetics of the activated sludge process[J]. Bioresource Technology, 2011, 102: 797-804. DOI: 10.1016/j.biortech.2010.08.116. [16] XU W, ZHANG H M, LI G, et al. A urine/Cr(Ⅵ) fuel cell-electrical power from processing heavy metal and human urine[J]. Journal of Electroanalytical Chemistry, 2016, 764: 38-44. DOI: 10.1016/j.jelechem.2016.01.013. [17] LOGAN B E, HAMELERS B, ROZENDAL R, et al. Microbial fuel cells: methodology and technology[J]. Environmental Science & Technology, 2006, 40: 5181-5192. DOI: 10.1021/es0605016. [18] ZHAO S, CHEN Z J, KHAN A, et al. Elevated Cr(Ⅵ) reduction in a biocathode microbial fuel cell without acclimatization inversion based on strain Corynebacterium vitaeruminis LZU47-1[J]. International Journal of Hydrogen Energy, 2021, 46: 3193-3203. DOI: 10.1016/j.ijhydene.2020.05.254. [19] CHOO G, WANG W T, CHO H S, et al. Legacy and emerging persistent organic pollutants in the freshwater system: relative distribution, contamination trends, and bioaccumulation[J]. Environment International, 2020, 135: 105377. DOI: 10.1016/j.envint.2019.105377. [20] HA P T, MOON H, KIM B H, et al. Determination of charge transfer resistance and capacitance of microbial fuel cell through a transient response analysis of cell voltage[J]. Biosensors and Bioelectronics, 2010, 25: 1629-1634. DOI: 10.1016/j.bios.2009.11.023. [21] HU Q, SUN J J, SUN D Z, et al. Simultaneous Cr(Ⅵ) bio-reduction and methane production by anaerobic granular sludge[J]. Bioresource Technology, 2018, 262: 15-21. DOI: 10.1016/j.biortech.2018.04.060. [22] LU Y Z, FU L, DING J, et al. Cr(Ⅵ) reduction coupled with anaerobic oxidation of methane in a laboratory reactor[J]. Water Research, 2016, 102: 445-452. DOI: 10.1016/j.watres.2016.06.065. [23] ZHOU J, LI M, ZHOU W, et al. Efficacy of electrode position in microbial fuel cell for simultaneous Cr(Ⅵ) reduction and bioelectricity production[J]. Science of the Total Environment, 2020, 748: 141425. DOI: 10.1016/j.scitotenv.2020.141425. [24] LI J R, CHEN T, YIN J, et al. Effect of nano-magnetite on the propionic acid degradation in anaerobic digestion system with acclimated sludge[J]. Bioresource Technology, 2021, 334: 125143. DOI: 10.1016/j.biortech.2021.125143. [25] 李斗, 赵由才, 宋立岩, 等. 六价铬细菌还原的分子机制研究进展[J]. 环境科学, 2014, 35(4): 1602-1612. DOI: 10.13227/j.hjkx.2014.04.057. [26] DUNFIELD P F, YURYEV A, SENIN P, et al. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia[J]. Nature, 2007, 450: 879-882. DOI: 10.1038/nature06411. [27] LU Y Z, CHEN G J, BAI Y N, et al. Chromium isotope fractionation during Cr(Ⅵ) reduction in a methane-based hollow-fiber membrane biofilm reactor[J]. Water Research, 2018, 130: 263-270. DOI: 10.1016/j.watres.2017.11.045. [28] LIU C Q, SUN D Z, ZHAO Z Q, et al. Methanothrix enhances biogas upgrading in microbial electrolysis cell via direct electron transfer[J]. Bioresource Technology, 2019, 291: 121877. DOI: 10.1016/j.biortech.2019.121877. [29] ZHAO Z Q, WANG J F, LI Y, et al. Why do DIETers like drinking: metagenomic analysis for methane and energy metabolism during anaerobic digestion with ethanol[J]. Water Research, 2020, 171: 115425. DOI: 10.1016/j.watres.2019.115425. [30] YIN Q D, GU M Q, HERMANOWICZ S W, et al. Potential interactions between syntrophic bacteria and methanogens via type Ⅳ pili and quorum-sensing systems[J]. Environment International, 2020, 138: 105650. DOI: 10.1016/j.envint.2020.105650. [31] YOON J, MATSUO Y, ADACHI K, et al. Description of Persicirhabdus sediminis gen. nov., sp. nov., Roseibacillus ishigakijimensis gen. nov., sp. nov., Roseibacillus ponti sp. nov., Roseibacillus persicicus sp. nov., Luteolibacter pohnpeiensis gen. nov., sp. nov. and Luteolibacter algae sp. nov., six marine members of the phylum ‘Verrucomicrobia', and emended descriptions of the class Verrucomicrobiae, the order Verrucomicrobiales and the family Verrucomicrobiaceae[J]. International Journal of Systematic and Evolutionary Microbiology, 2008, 58: 998-1007. DOI: 10.1099/ijs.0.65520-0. [32] LI T, ZHOU Q X. The key role of Geobacter in regulating emissions and biogeochemical cycling of soil-derived greenhouse gases[J]. Environmental Pollution, 2020, 266: 115135. DOI: 10.1016/j.envpol.2020.115135. [33] DIMITROULA H, SYRANIDOU E, MANOUSAKI E, et al. Mitigation measures for chromium-Ⅵ contaminated groundwater: the role of endophytic bacteria in rhizofiltration[J]. Journal of Hazardous Materials, 2015, 281: 114-120. DOI: 10.1016/j.jhazmat.2014.08.005. |
[1] | 唐琳钦, 王安柳, 宿程远, 邓雪, 赵力剑, 先云川, 陈宇. 不同氮源对好氧颗粒污泥理化特性及微生物群落影响[J]. 广西师范大学学报(自然科学版), 2021, 39(2): 144-153. |
[2] | 谢秋丽, 唐玉娟, 苏厚人, 李光伟, 李良波, 韦继光, 黄荣韶. 不同株龄田七根际土壤微生物和酶活性变化[J]. 广西师范大学学报(自然科学版), 2017, 35(3): 149-156. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |