广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (3): 242-254.doi: 10.16088/j.issn.1001-6600.2022040403

• 研究论文 • 上一篇    

Cr(Ⅵ)浓度对MFC-颗粒污泥耦合体系运行效能及微生态的影响

覃容华1,2, 宿程远1,2*, 陆欣雅2, 陈政鹏2, 周一杰2, 先云川2   

  1. 1.珍稀濒危动植物生态与环境保护教育部重点实验室(广西师范大学), 广西 桂林 541006;
    2.广西师范大学 环境与资源学院, 广西 桂林 541006
  • 收稿日期:2022-04-04 修回日期:2022-05-05 出版日期:2023-05-25 发布日期:2023-06-01
  • 通讯作者: 宿程远(1981—), 男, 广西师范大学教授, 博士。E-mail: suchengyuan2008@126.com
  • 基金资助:
    国家自然科学基金(52060003); 广西师范大学交叉培育项目(2021JC009)

Effects of Cr(Ⅵ) Concentration on the Performance and Microecology of MFC-Granular Sludge Coupling System

QIN Ronghua1,2, SU Chengyuan1,2*, LU Xinya2, CHEN Zhengpeng2, ZHOU Yijie2, XIAN Yunchuan2   

  1. 1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    2. School of Environment and Resources, Guangxi Normal University, Guilin Guangxi 541006, China
  • Received:2022-04-04 Revised:2022-05-05 Online:2023-05-25 Published:2023-06-01

摘要: Cr(Ⅵ)在水体环境中的污染不容忽视,探讨高效处理含Cr(Ⅵ)废水具有重要意义。本文建立了微生物燃料电池(MFC)-颗粒污泥耦合处理含Cr(Ⅵ)废水体系,考察了Cr(Ⅵ)浓度变化对该体系运行效能及微生态的影响。实验结果表明:当进水Cr(Ⅵ)浓度达到80 mg/L时,该体系对COD的去除率与Cr(Ⅵ)生物还原率分别达到92.71%和99.70%;循环伏安法(CV)显示其具有明显的还原峰,电化学阻抗谱(EIS)表明随着进水Cr(Ⅵ)浓度的增加,电荷转移内阻逐渐减小;进水Cr(Ⅵ)浓度增大到100 mg/L时,辅酶F420活性最低为0.026 2±0.000 2 mmol/g,INT-ETS活性明显下降,仅为5.20±0.23 μg/(mg·h);X射线光电子能谱特征峰结合能表明其主要由Cr2O3和Cr(OH)3组成;高通量测序分析表明,该体系中的优势菌群为Chloroflexi和Proteobacteria,进水Cr(Ⅵ)浓度增大至100 mg/L,属水平的优势菌群由以Methanothrix、Methanobacterium等产甲烷菌为主转变为以电活性细菌Geobacter和共养菌属Syntrophobacter为主,其最大相对丰度分别为21.24%、4.28%、5.60%和6.22%,表明增大Cr(Ⅵ)浓度会改变MFC-颗粒污泥耦合体系中的微生物群落结构,Cr(Ⅵ)可通过微生物菌群之间的联营机制进行还原。

关键词: 铬酸盐还原, MFC-颗粒污泥耦合体系, 电化学性能, 微生物群落

Abstract: Heavy metal pollution in water environment cannot be ignored, especially the pollution phenomenon of hexavalent chromium (Cr(Ⅵ)). In order to explore a new idea for efficient treatment of Cr(Ⅵ)-containing wastewater, a microbial fuel cell (MFC)-granular sludge coupling system was established. The effects of the Cr(Ⅵ) concentration on the performance and microecology of MFC-granular sludge coupling system were investigated. When the Cr(Ⅵ) content reached 80 mg/L in the influent, the chemical oxygen demand (COD) degradation and biological reduction efficiency of Cr(Ⅵ) by the system were 92.71% and 99.70%, respectively. In the electrochemical performance analysis, cyclic voltammetry (CV) showed an obvious reduction peak. Meanwhile, the electrochemical impedance spectroscopy (EIS) illustrated that with increasing Cr(Ⅵ) concentrations, the charge transfer resistance gradually decreased. When the influent Cr(Ⅵ) concentration increased to 100 mg/L, the lowest activity of coenzyme F420 was 0.026 2±0.000 2 mmol/g; in addition, the activity of INT-ETS sharply decreased to 5.20±0.23 μg/(mg·h). The morphology of Cr(Ⅵ) after biological reduction of chromate was determined by X-ray photoelectron spectroscopy (XPS), the binding energy of the characteristic peaks demonstrated that was mainly represented by Cr2O3 and Cr(OH)3. High-throughput sequencing analysis illustrated that the dominant microbial flora were Chloroflexi and Proteobacteria. When the concentration of Cr(Ⅵ) increased to 100 mg/L, the dominant microbial community structure were transformed from Methanothrix and Methanobacterium to Geobacter and Syntrophobacter at genus level, the maximum relative abundance of each bacteria were 21.24%, 4.28%, 5.60% and 6.22%, respectively. It was indicated that increasing the concentration of Cr(Ⅵ) would change the microbial community structure of the MFC-granular sludge coupling system, and Cr(Ⅵ) was reduced through the association mechanism between microbial communities.

Key words: chromate reduction, MFC-granular sludge coupling system, electrochemical performance, microbial communities

中图分类号:  X703.1

[1] UDDIN M J, JEONG Y K, LEE W. Microbial fuel cells for bioelectricity generation through reduction of hexavalent chromium in wastewater: a review[J]. International Journal of Hydrogen Energy, 2021, 46(20): 11458-11481. DOI: 10.1016/j.ijhydene.2020.06.134.
[2] JIANG B, XIN S S, LIU Y J, et al. The role of thiocyanate in enhancing the process of sulfite reducing Cr(Ⅵ) by inhibiting the formation of reactive oxygen species[J]. Journal of Hazardous Materials, 2018, 343: 1-9. DOI: 10.1016/j.jhazmat.2017.09.015.
[3] RENU K, CHAKRABORTY R, MYAKALA H, et al. Molecular mechanism of heavy metals (lead, chromium, arsenic, mercury, nickel and cadmium)-induced hepatotoxicity: a review[J]. Chemosphere, 2021, 271: 129735. DOI: 10.1016/j.chemosphere.2021.129735.
[4] RAJAPAKSHA A U, SELVASEMBIAN R, ASHIQ A, et al. A systematic review on adsorptive removal of hexavalent chromium from aqueous solutions: recent advances[J]. Science of the Total Environment, 2022, 809: 152055. DOI: 10.1016/j.scitotenv.2021.152055.
[5] ROWBOTHAM A L, LEVY L S, SHUKER L K. Chromium in the environment: an evaluation of exposure of the UK general population and possible adverse health effects[J]. Journal of Toxicology and Environmental Health. Part B, Critical Reviews, 2000, 3(3): 145-178. DOI: 10.1080/10937400050045255.
[6] LI M, ZHOU S Q, XU Y T, et al. Simultaneous Cr(Ⅵ) reduction and bioelectricity generation in a dual chamber microbial fuel cell[J]. Chemical Engineering Journal, 2018, 334: 1621-1629. DOI: 10.1016/j.cej.2017.11.144.
[7] MU C X, WANG L, WANG L. Removal of Cr(Ⅵ) and electricity production by constructed wetland combined with microbial fuel cell (CW-MFC): influence of filler media[J]. Journal of Cleaner Production, 2021, 320: 128860. DOI: 10.1016/j.jclepro.2021.128860.
[8] LAI C Y, WEN L L, SHI L D, et al. Selenate and nitrate bioreductions using methane as the electron donor in a membrane biofilm reactor[J]. Environmental Science & Technology, 2017, 50(18): 10179-10186. DOI: 10.1021/acs.est.6b02807.
[9] LUO J H, WU M X, LIU J Y, et al. Microbial chromate reduction coupled with anaerobic oxidation of methane in a membrane biofilm reactor[J]. Environment International, 2019, 130: 104926. DOI: 10.1016/j.envint.2019.104926.
[10] ZHU C Y, WANG J F, LI Q S, et al. Integration of CW-MFC and anaerobic granular sludge to explore the intensified ammonification-nitrification-denitrification processes for nitrogen removal[J]. Chemosphere, 2021, 278: 130428. DOI: 10.1016/j.chemosphere.2021.130428.
[11] DENG Q J, SU C Y, LU X Y, et al. Performance and functional microbial communities of denitrification process of a novel MFC-granular sludge coupling system[J]. Bioresource Technology, 2020, 306: 123173. DOI: 10.1016/j.biortech.2020.123173.
[12] DONG B, XIA Z H, SUN J, et al. The inhibitory impacts of nano-graphene oxide on methane production from waste activated sludge in anaerobic digestion[J]. Science of the Total Environment, 2019, 646: 1376-1384. DOI: 10.1016/j.scitotenv.2018.07.424.
[13] 尹军, 谭学军, 任南琪. 用TTC与INT-电子传递体系活性表征重金属对污泥活性的影响[J]. 环境科学, 2005, 26(1): 56-62. DOI: 10.13227/j.hjkx.2005.01.013.
[14] 唐琳钦, 王安柳, 宿程远, 等. 不同氮源对好氧颗粒污泥理化特性及微生物群落影响[J]. 广西师范大学学报(自然科学版), 2021, 39(2): 144-153. DOI: 10.16088/j.issn.1001-6600.2020061301.
[15] CHENG L, LI X C, JIANG R X, et al. Effects of Cr(Ⅵ) on the performance and kinetics of the activated sludge process[J]. Bioresource Technology, 2011, 102: 797-804. DOI: 10.1016/j.biortech.2010.08.116.
[16] XU W, ZHANG H M, LI G, et al. A urine/Cr(Ⅵ) fuel cell-electrical power from processing heavy metal and human urine[J]. Journal of Electroanalytical Chemistry, 2016, 764: 38-44. DOI: 10.1016/j.jelechem.2016.01.013.
[17] LOGAN B E, HAMELERS B, ROZENDAL R, et al. Microbial fuel cells: methodology and technology[J]. Environmental Science & Technology, 2006, 40: 5181-5192. DOI: 10.1021/es0605016.
[18] ZHAO S, CHEN Z J, KHAN A, et al. Elevated Cr(Ⅵ) reduction in a biocathode microbial fuel cell without acclimatization inversion based on strain Corynebacterium vitaeruminis LZU47-1[J]. International Journal of Hydrogen Energy, 2021, 46: 3193-3203. DOI: 10.1016/j.ijhydene.2020.05.254.
[19] CHOO G, WANG W T, CHO H S, et al. Legacy and emerging persistent organic pollutants in the freshwater system: relative distribution, contamination trends, and bioaccumulation[J]. Environment International, 2020, 135: 105377. DOI: 10.1016/j.envint.2019.105377.
[20] HA P T, MOON H, KIM B H, et al. Determination of charge transfer resistance and capacitance of microbial fuel cell through a transient response analysis of cell voltage[J]. Biosensors and Bioelectronics, 2010, 25: 1629-1634. DOI: 10.1016/j.bios.2009.11.023.
[21] HU Q, SUN J J, SUN D Z, et al. Simultaneous Cr(Ⅵ) bio-reduction and methane production by anaerobic granular sludge[J]. Bioresource Technology, 2018, 262: 15-21. DOI: 10.1016/j.biortech.2018.04.060.
[22] LU Y Z, FU L, DING J, et al. Cr(Ⅵ) reduction coupled with anaerobic oxidation of methane in a laboratory reactor[J]. Water Research, 2016, 102: 445-452. DOI: 10.1016/j.watres.2016.06.065.
[23] ZHOU J, LI M, ZHOU W, et al. Efficacy of electrode position in microbial fuel cell for simultaneous Cr(Ⅵ) reduction and bioelectricity production[J]. Science of the Total Environment, 2020, 748: 141425. DOI: 10.1016/j.scitotenv.2020.141425.
[24] LI J R, CHEN T, YIN J, et al. Effect of nano-magnetite on the propionic acid degradation in anaerobic digestion system with acclimated sludge[J]. Bioresource Technology, 2021, 334: 125143. DOI: 10.1016/j.biortech.2021.125143.
[25] 李斗, 赵由才, 宋立岩, 等. 六价铬细菌还原的分子机制研究进展[J]. 环境科学, 2014, 35(4): 1602-1612. DOI: 10.13227/j.hjkx.2014.04.057.
[26] DUNFIELD P F, YURYEV A, SENIN P, et al. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia[J]. Nature, 2007, 450: 879-882. DOI: 10.1038/nature06411.
[27] LU Y Z, CHEN G J, BAI Y N, et al. Chromium isotope fractionation during Cr(Ⅵ) reduction in a methane-based hollow-fiber membrane biofilm reactor[J]. Water Research, 2018, 130: 263-270. DOI: 10.1016/j.watres.2017.11.045.
[28] LIU C Q, SUN D Z, ZHAO Z Q, et al. Methanothrix enhances biogas upgrading in microbial electrolysis cell via direct electron transfer[J]. Bioresource Technology, 2019, 291: 121877. DOI: 10.1016/j.biortech.2019.121877.
[29] ZHAO Z Q, WANG J F, LI Y, et al. Why do DIETers like drinking: metagenomic analysis for methane and energy metabolism during anaerobic digestion with ethanol[J]. Water Research, 2020, 171: 115425. DOI: 10.1016/j.watres.2019.115425.
[30] YIN Q D, GU M Q, HERMANOWICZ S W, et al. Potential interactions between syntrophic bacteria and methanogens via type Ⅳ pili and quorum-sensing systems[J]. Environment International, 2020, 138: 105650. DOI: 10.1016/j.envint.2020.105650.
[31] YOON J, MATSUO Y, ADACHI K, et al. Description of Persicirhabdus sediminis gen. nov., sp. nov., Roseibacillus ishigakijimensis gen. nov., sp. nov., Roseibacillus ponti sp. nov., Roseibacillus persicicus sp. nov., Luteolibacter pohnpeiensis gen. nov., sp. nov. and Luteolibacter algae sp. nov., six marine members of the phylum ‘Verrucomicrobia', and emended descriptions of the class Verrucomicrobiae, the order Verrucomicrobiales and the family Verrucomicrobiaceae[J]. International Journal of Systematic and Evolutionary Microbiology, 2008, 58: 998-1007. DOI: 10.1099/ijs.0.65520-0.
[32] LI T, ZHOU Q X. The key role of Geobacter in regulating emissions and biogeochemical cycling of soil-derived greenhouse gases[J]. Environmental Pollution, 2020, 266: 115135. DOI: 10.1016/j.envpol.2020.115135.
[33] DIMITROULA H, SYRANIDOU E, MANOUSAKI E, et al. Mitigation measures for chromium-Ⅵ contaminated groundwater: the role of endophytic bacteria in rhizofiltration[J]. Journal of Hazardous Materials, 2015, 281: 114-120. DOI: 10.1016/j.jhazmat.2014.08.005.
[1] 唐琳钦, 王安柳, 宿程远, 邓雪, 赵力剑, 先云川, 陈宇. 不同氮源对好氧颗粒污泥理化特性及微生物群落影响[J]. 广西师范大学学报(自然科学版), 2021, 39(2): 144-153.
[2] 谢秋丽, 唐玉娟, 苏厚人, 李光伟, 李良波, 韦继光, 黄荣韶. 不同株龄田七根际土壤微生物和酶活性变化[J]. 广西师范大学学报(自然科学版), 2017, 35(3): 149-156.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韦宏金, 周喜乐, 金冬梅, 王莹, 朱晓凤, 商辉, 赵国华, 严岳鸿. 广东蕨类植物新记录[J]. 广西师范大学学报(自然科学版), 2016, 34(2): 135 -142 .
[2] 陈泽柠, 罗雪梅, 廖娴, 陈郭燕, 武正军. 氯化钙对福寿螺卵块的杀灭作用[J]. 广西师范大学学报(自然科学版), 2016, 34(1): 156 -161 .
[3] 杜雪松,林勇,梁国琨,黄姻,宾石玉,陈忠,覃俊奇,赵怡. 两种罗非鱼的耐寒性能比较[J]. 广西师范大学学报(自然科学版), 2019, 37(3): 174 -179 .
[4] 覃玉月, 刘晓波, 徐照隆, 莫土香, 李俊, 杨瑞云. 广豆根内生真菌Xylaria sp. GDGJ-368代谢产物研究[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 71 -77 .
[5] 陈丹妮, 陈志林, 周善义. 中国蚁科昆虫名录——切叶蚁亚科(补遗)[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 87 -97 .
[6] 胡锦铭, 韦笃取. 不同阶次分数阶永磁同步电机的混合投影同步[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 1 -8 .
[7] 李倩, 刘兴诏, 连欣欣, 林赛男, 李佳芯. 基于空间句法的福州南台岛公园绿地可达性研究[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 181 -195 .
[8] 詹鑫, 陈李璟, 廖广凤, 李兵, 卢汝梅. 萝藦科药用植物中新C21甾体的研究进展(Ⅰ)[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 1 -29 .
[9] 侯欠欠, 方志刚, 秦渝, 朱依文. 团簇Fe4P的成键及极化率探究[J]. 广西师范大学学报(自然科学版), 2021, 39(6): 140 -146 .
[10] 白尚旺, 马晓倩, 高改梅, 刘春霞, 党伟超. 基于可验证随机函数和BLS签名的拜占庭容错共识算法[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 194 -201 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发