广西师范大学学报(自然科学版) ›› 2021, Vol. 39 ›› Issue (5): 1-29.doi: 10.16088/j.issn.1001-6600.2020110903

• 综述 •    下一篇

萝藦科药用植物中新C21甾体的研究进展(Ⅰ)

詹鑫, 陈李璟, 廖广凤, 李兵, 卢汝梅*   

  1. 广西中医药大学 药学院,广西 南宁 530200
  • 收稿日期:2020-11-09 修回日期:2021-01-16 出版日期:2021-09-25 发布日期:2021-10-19
  • 通讯作者: 卢汝梅(1969—),女,广西陆川人,广西中医药大学教授,博士。E-mail:lrm1969@163.com
  • 基金资助:
    国家自然科学基金(81860750);广西壮瑶药重点实验室项目(桂科基字[2014]32号)

Research Progress of New C21-Steroids in Medicinal Plant of Asclepiadaceae (Ⅰ)

ZHAN Xin, CHEN Lijing, LIAO Guangfeng, LI Bing, LU Rumei*   

  1. College of Pharmacy, Guangxi University of Chinese Medicine, Nanning Guangxi 530200, China
  • Received:2020-11-09 Revised:2021-01-16 Online:2021-09-25 Published:2021-10-19

摘要: C21甾体是一类母核含有21个碳原子的甾体衍生物,是孕甾烷或其异构体的衍生物,有抗肿瘤、抗炎、镇痛、抗生育、抗抑郁、免疫调节等多方面的药理活性,具有十分重要的药用价值。萝藦科植物是天然C21甾体的主要来源之一。根据相关文献统计,近20年来从萝藦科药用植物中分离鉴定的新C21甾体化合物共624种,包含9种不同的骨架类型。我们分3部分对21世纪以来萝藦科植物中C21甾体的分布、结构特征及药理活性进行综述,以期为C21甾体的深入研究和开发利用提供参考,为探索萝藦科植物的药用价值和药效物质基础提供科学依据。本文综述萝藦科植物中孕甾烷型C21甾体的分布、结构特征、理化性质及波谱特征。

关键词: 萝藦科, C21甾体, 分布, 结构特征, 波谱特征

Abstract: C21-steroids is a steroid derivative with 21 carbon atoms in the parent nucleus, and it is a derivative of pregnanes or its isomer. It has many pharmacological activities such as anti-tumor, anti-inflammation and analgesia, anti-fertility, anti-depression and immune regulation, etc. The plant of the family Asclepiadaceae is one of the main sources of natural C21-steroids. According to the statistics of relevant literature, 624 new C21-steroidal compounds were isolated and identified from the medicinal plant of Asclepiadaceae in the past 2 decades, including 9 different skeleton types. In this paper, the distribution, structural characteristics and pharmacological activities of C21-steroids in plants of Asclepiadaceae since 2000s were summarized in three parts, in order to provide references for the further research, development and utilization of C21-steroids, and to provide scientific basis for exploring the medicinal value and therapeutic basis of the plants of Asclepiadaceae. At the beginning of this paper, the distribution, structural characteristics, physicochemical properties and spectra of the prene-type C21-steroids in plants of Asclepiadaceae were reviewed.

Key words: Asclepiadaceae, C21-steroids, distribution, structural characteristics, spectral characteristics

中图分类号: 

  • O629.2
[1] 中国科学院中国植物志编辑委员会. 中国植物志(第63卷)[M]. 北京: 科学出版社, 1977: 249.
[2] 国家中医药管理局《中华本草》编委会. 中华本草[M]. 上海:上海科学技术出版社,1999.
[3] 国家药典委员会.中华人民共和国药典(一部)[M]. 北京: 中国医药科技出版社, 2020.
[4] 裴月湖, 娄红祥, 张卫东,等. 天然药物化学[M]. 7版. 北京: 人民卫生出版社, 2016: 280.
[5] WU Z J, DING L S, ZHAO S X. Chemical constituents and pharmacological activities of Cynanchum plants[J]. World Phytomedicines-plant MedFence, 1991, 6: 147-154.
[6] 白虹, 王元书, 刘爱芹. 鹅绒藤植物C21甾体类化学成分研究进展[J]. 天然产物研究与开发, 2007, 19(5): 897-904.
[7] YAO H L,LIU Y, LIU X H, et al. Metajapogenins A-C, pregnane steroids from shells of Metaplexis japonica[J]. Molecules,2017, 22(4): 646-653.
[8] 姚慧丽. 萝藦逆转肿瘤多药耐药物质基础研究[D]. 青岛:青岛大学, 2017.
[9] ZHU W F, SU S Z, XU Y H, et al. C21-steroids from Streptocaulon juventas (Lour) Merr. induce apoptosis in HepG2[J]. Steroids, 2018,140:167-172.
[10] SUN G, DAI Q, ZHANG H X, et al. New sweet-tasting C21-pregnane glycosides from pericarps of Myriopteron extensum[J]. Journal of Agricultural and Food Chemistry, 2016, 64(49): 9381-9389.
[11] SUN G, ZHANG H X, MA Y P, et al. New sweet-tasting C21pregnane glycosides from the roots of Myriopteron extensum[J]. Journal of Agricultural and Food Chemistry, 2018, 66(29): 7735-7739.
[12] GARCíA V P, BERMEJO J, RUBIO S. Pregnane steroidal glycosides and their cytostatic activities[J]. Glycobiology, 2011, 21(5): 619-624.
[13] 徐锐. 匙羹藤茎化学成分及活性研究[D]. 北京:中国人民解放军军事医学科学院, 2015.
[14] XU R, YANG Y, ZHANG Y, et al. New pregnane glycosides from Gymnema sylvestre[J]. Molecules, 2015, 20(2):3050-3066.
[15] SRISURICHAN S, PUTHONG S, PORNPAKAKUL S. Pregnane-type steroidal glycosides from Gymnema griffithii Craib[J]. Phytochemistry, 2014, 106: 197-206.
[16] TRANG D T, YEN D T H, CUONG N T, et al. Pregnane glycosides from Gymnema inodorum and their α-glucosidase inhibitory activity[J]. Natural Product Research, 2019:1663517.
[17] YEN D T H, TRANG D T, TAI B H, et al. Four new pregnane glycosides from Gymnema latifolium and their α-glucosidase and α-amylase inhibitory activities[J]. Natural Product Research, 2020:1729153.
[18] 袁玮琪. 马利筋新型C21甾体化合物Asclepiasterol逆转P-gp介导肿瘤多药耐药的作用及机制研究[D]. 广州: 暨南大学, 2016.
[19] ZHANG Q Y, ZHAO Y Y, WANG B, et al. New pregnane glycosides from Stelmatocrypton khasianum[J]. Steroids, 2002, 67(5): 347-351.
[20] SONG J, DAI R J, DENG Y L, et al. Rapid structure prediction by HPLC-ESI-MSn of twenty-five polyoxypregnane tetraglycosides from Dregea sinensis with NMR confirmation of eight structures[J]. Phytochemistry, 2018, 147: 147-157.
[21] 刘云宝. 一,苦绳化学成分及其生物活性研究 二,苦绳中甾体苷类成分ESI-MS裂解行为研究及HPLC-ESI-MS/MSn在线结构测定研究[D]. 北京:中国协和医科大学, 2007.
[22] LIU X J, SHI Y, JIA S H, et al. Six new C-21 steroidal glycosides from Dregea sinensis Hemsl[J]. Journal of Asian Natural Products Research, 2017, 19(8): 745-753.
[23] 李晓誉, 陈峰阳, 徐世芳, 等. 黑鳗藤的化学成分及其生物活性研究[C] // 中国化学会第9届天然有机化学学术会议论文集. 北京: 中国化学会,2012: 223.
[24] YE Y P, CHEN F Y, SUN H X, et al. Two novel immunosuppressive pregnane glycosides from the roots of Stephanotis mucronata[J]. Bioorganic and Medicinal Chemistry Letters, 2006, 16(17): 4586-4591.
[25] 叶益萍. 黑鳗藤中C21甾体苷类成分及其免疫活性研究[D]. 杭州: 浙江大学, 2005.
[26] 张如松, 叶益萍, 李晓誉, 等. 黑鳗藤中C21甾体苷的分离和结构测定[J]. 化学学报, 2003, 61(12): 1991-1996.
[27] 李晓誉. 两种萝藦科植物的C21甾体苷类成分和免疫活性研究[D]. 杭州: 浙江大学, 2006.
[28] 秦俊俊. 四种植物:黄花杠柳、戟叶牛皮消、青钱柳和独子藤的化学成分及生物活性研究[D]. 上海:中国科学院大学, 2018.
[29] 刘颖, 欧阳玥, 王宗权, 等. 香加皮中一个新C21甾体皂苷类化合物[J]. 中国中药杂志, 2015, 40(3): 455-457.
[30] WANG L Y, QIN J J, CHEN Z H, et al. Absolute configuration of periplosides C and F and isolation of minor spiro-orthoester group-containing pregnane-type steroidal glycosides from Periploca sepium and their T-lymphocyte proliferation inhibitory activities[J]. Journal of Natural Products, 2017, 80(4): 1102-1109.
[31] LI R F, ZHAO X M, SHI B J, et al. Insecticidal pregnane glycosides from the root barks of Periploca sepium[J]. Natural Product Communications, 2016, 11(10): 1425-1428.
[32] FENG J Q, ZHAO W M. Complete 1H and 13C NMR assignments of four new oligosaccharides and two new glycosides from Periploca forrestii[J]. Magnetic Resonance of Chemistry, 2009, 47(8): 701-705.
[33] 张鹰. 苗药黑骨藤抑制肺癌细胞A549生长的有效成分研究[D]. 成都: 成都中医药大学, 2019.
[34] PANG X, KANG L P, YU H S, et al. New polyoxypregnane glycosides from the roots of Marsdenia tenacissima[J]. Steroids, 2015, 93: 68-76.
[35] PANG X, KANG L P, FANG X M, et al. Polyoxypregnane glycosides from the roots of Marsdenia tenacissima and their anti-HIV activities[J]. Planta Medica, 2017, 83(1/2): 126-134.
[36] YAO S, TO K K W, MA L, et al. Polyoxypregnane steroids with an open-chain sugar moiety from Marsdenia tenacissima and their chemoresistance reversal activity[J]. Phytochemistry, 2016, 126: 47-58.
[37] 雷勇胜. 通光藤化学成分的研究[D]. 沈阳:沈阳药科大学, 2008.
[38] DENG J, LIAO Z X, CHEN D F. Marsdenosides A-H, polyoxypregnane glycosides from Marsdenia tenacissima[J]. Phytochemistry, 2005, 66(9): 1040-1051.
[39] DENG J, LIAO Z X, CHEN D F. Three new polyoxypregnane glycosides from Marsdenia tenacissima[J]. Helvetica Chimica Acta, 2005, 88(10): 2675-2682.
[40] WANG X L, LI Q F, YU K B,et al. Four new pregnane glycosides from the stems of Marsdenia tenacissima[J]. Helvetica Chimica Acta, 2006, 89(11): 2738-2744.
[41] LI Q F,WANG X L,DING L S,et al. Polyoxypregnanes from the stems of Marsdenia tenacissima[J]. Chinese Chemical Letters, 2007, 18(7): 831-834.
[42] LIU J, YU Z B, YE Y H, et al. A new C21 steroid glycoside from Marsdenia tenacissima[J]. Chinese Chemical Letters, 2008, 19(4): 444-446.
[43] 李建绪, 李华, 陈娜, 等. 通光藤中一个新C21甾体成分[J]. 中草药, 2009, 40(9): 1349-1352.
[44] 雷勇胜, 李占林, 杨珅珅, 等. 通光散藤茎的C21甾体成分[J]. 药学学报, 2008, 43(5): 509-512.
[45] 刑兴旺, 陈斌, 宓鹤鸣, 等. 通光藤中两个新C21甾体苷类成分[J]. 药学学报, 2004, 39(4): 272-275.
[46] WANG S, LAI Y H, TIAN B, et al. Two new C21 steroidal glycosides from Marsdenia tenacissima (Roxb.) wight et arn[J]. Chemical and Pharmeceutical Bulletin, 2006, 54(5): 696-698.
[47] ZHANG H, TAN A M, FENG F, et al. Two new C21 steroidal glycosides from the stems of Marsdenia tenacissima[J]. Helvetica Chimica Acta, 2008, 91(8): 1489-1493.
[48] 石慧, 崔炯谟, 关健, 等. 通光藤的化学成分研究[J]. 中草药, 2008, 39(7): 970-972.
[49] ZHANG H, TAN A M, ZHANG A Y, et al. Five new C21 steroidal glycosides from the stems of Marsdenia tenacissima[J]. Steroids, 2010, 75: 176-183.
[50] TATSUNO S, YOKOSUKA A, HATSUMA F, et al. Pregnane glycosides from the bark of Marsdenia cundurango and their cytotoxic activity[J]. Journal of Natural Medicines, 2019, 73: 93-103.
[51] 褚文希. 徐长卿逆转肿瘤多药耐药作用物质基础研究[D]. 青岛: 青岛大学, 2016.
[52] ZHAO D, FENG B M, CHEN S F, et al. C21 steroidal glycosides from the roots of Cynanchum paniculatum[J]. Fitoterapia, 2016, 113: 51-57.
[53] WANG L Q, SHEN Y M, XU X, et al. Five new C21 steroidal glycosides from Cynanchum komarovii Al.Iljinski[J]. Steroids, 2004, 69(5): 319-324.
[54] HUANG L J, WANG B, ZHANG J X, et al. Studies on cytotoxic pregnane sapogenins from Cynanchum wilfordii[J]. Fitoterapia, 2015, 101: 107-116.
[55] 陈艳. 民族药隔山消的化学成分的研究[D]. 贵阳: 贵州大学, 2008.
[56] 葛永昌. 贵州民族药隔山消化学成分研究[D]. 贵阳: 贵州大学, 2009.
[57] YOON M Y, CHOI N H, MIN B S, et al. Potent in vivo antifungal activity against powdery mildews of pregnane glycosides from the roots of Cynanchum wilfordii[J]. Journal of Agricultural & Food Chemistry, 2011, 59(22): 12210-12216.
[58] LI J L, GAO Z B, ZHAO W M. Identification and evaluation of antiepileptic activity of C21 steroidal glycosides from the roots of Cynanchum wilfordii[J]. Journal of Natural Products, 2016, 79(1): 89-97.
[59] 陈刚. 昆明杯冠藤和Pfaffia glomerate的化学成分研究[D]. 沈阳: 沈阳药科大学, 2009.
[60] 陈刚. 昆明杯冠藤中C-21甾体类成分及其抗癌活性的研究[C] // 中国化学会第八届天然有机化学学术研讨会论文集. 济南: 山东大学出版社, 2010: 220
[61] CHEN G, XU N, PEI Y H. C21 steroidal glycosides from Cynanchum wallichii Wight[J]. Journal of Asian Natural Products Research, 2009, 11(2): 177-182.
[62] CHEN G, WANG D, PEI Y H. Two new C21 steroidal glycosides from Cynanchum wallichii Wight[J]. Journal of Asian Natural Products Research, 2008, 10(7/8): 679-684.
[63] CHEN G, XU N, LI Z F, et al. Steroidal glycosides with anti-tumor activity from the roots of Cynanchum wallichii Wight[J]. Journal of Asian Natural Products Research, 2010, 12(6): 453-457.
[64] LIU Y, HU Y C,YU S S, et al. Steroidal glycosides from Cynanchum forrestii. Schlechter[J]. Steroids, 2006, 71: 67-76.
[65] 赵家文. 泰山白首乌中C21甾体化合物的分离鉴定及其抑制Hedgehog信号通路活性的研究[D]. 杭州: 浙江省医学科学院, 2017.
[66] 姚楠, 顾晓洁, 李友宾. 白首乌C21甾体皂苷类成分的抗肿瘤活性研究[J]. 中成药, 2010, 32(11):1975-1978.
[67] GU X J, YAO N, QIAN S H, et al. Four new C21 steroidal glycosides from the roots of Cynanchum auriculatum[J]. Helvetica Chimica Acta, 2009, 92(1): 88-97.
[68] GAN H, XIANG W J, MA L, et al. Six new C21 steroidal glycosides from Cynanchum bungei Decne[J]. Helvetica Chimica Acta, 2008, 91(12): 2222-2234.
[69] 李召广, 吴军, 谌顺清, 等. 牛皮消中1个新C21甾体化合物[J]. 中草药, 2020, 51(23): 5921-5923, 5933.
[70] YANG Q X, GE Y C, HUANG X Y, et al. Cynanauriculoside C-E, three new antidepressant pregnane glycosides from Cynanchum auriculatum[J]. Phytochemistry Letters, 2011, 4(2): 170-175.
[71] LIU S Z, CHEN Z H, WU J, et al. Appetite suppressing pregnane glycosides from the roots of Cynanchum auriculatum[J]. Phytochemistry, 2013, 93: 144-153.
[72] QIAN X C, LI B C, LI P, et al. C21 steroidal glycosides from Cynanchum auriculatum and their neuroprotective effects against H2O2-induced damage in PC12 cells[J]. Phytochemistry, 2017, 140: 1-15.
[73] LU Y, XIONG H, TENG H L, et al. Three new steroidal glycosides from the roots of Cynanchum auriculatum[J]. Helvetica Chimica Acta, 2011, 94(7): 1296-1303.
[74] 饶丽丽. 西藏牛皮消的化学成分研究[D]. 昆明:昆明理工大学, 2014.
[75] ZHANG M, RAO L L, XIANG C, et al. C21 steroidal glycosides from the roots of Cynanchum saccatum[J]. Steroids, 2015, 101: 28-36.
[76] DONG J R, PENG X R, LI L, et al. C21 steroidal glycosides with cytotoxic activities from Cynanchum otophyllum[J]. Bioorganic & Medicinal Chemistry Letters, 2018, 28(9): 1520-1524.
[77] 赵益斌, 沈月毛, 何红平, 等. 青阳参的一个新C21甾体苷[J]. 云南植物研究, 2005, 27(4): 443-446.
[78] ZHAO Y B, HE H P, LU C H, et al. C21 steroidal glycosides of seven sugar residues from Cynanchum otophyllum[J]. Steroids, 2006, 71(11/12): 935-941.
[79] MA X X, JIANG F T, YANG Q X, et al. New pregnane glycosides from the roots of Cynanchum otophyllum[J]. Steroids, 2007, 72(11/12): 778-786.
[80] MA X X, WANG D, ZHANG Y J, et al. Identification of new qingyangshengenin and caudatin glycosides from the roots of Cynanchum otophyllum[J]. Steroids, 2011, 76(10/11): 1003-1009.
[81] MA L F, SHAN W G, ZHAN Z J. Polyhydroxypregnane glycosides from the roots of Cynanchum otophyllum[J]. Helvetica Chimica Acta, 2011, 94(12): 2272-2282.
[82] SHAN W G, LIU X, MA L F, et al. New polyhydroxypregnane glycosides from Cynanchum otophyllum[J]. Journal of Chemical Research, 2012, 36(1): 38-40.
[83] ZHAO Z M, SUN Z H, CHEN M H, et al. Neuroprotective polyhydroxypregnane glycosides from Cynanchum otophyllum[J]. Steroids, 2013, 78(10): 1015-1020.
[84] ZHAO Y B, FAN Q S, XU G L, et al. C21 Steroidal glycosides from acidic hydrolysate of Cynanchum otophyllum[J]. Chinese Herbal Medicines, 2014, 6(4): 319-323.
[85] SHEN D Y, WEI J C, WAN J B, et al. Four new C21 steroidal glycosides from Cynanchum otophyllum Schneid[J]. Phytochemistry Letters, 2014, 9: 86-91.
[86] LI J L, ZHOU J, CHEN Z H, et al. Bioactive C21 steroidal glycosides from the roots of Cynanchum otophyllum that suppress the seizure-like locomotor activity of zebrafish caused by pentylenetetrazole[J]. Journal of Natural Products, 2015, 78(7): 1548-1555.
[87] YANG X X, BAO Y R, WANG L F, et al. Two new steroidal glycosides from Cynanchum otophyllum Schneid[J]. Journal of Asian Natural Products Research, 2015, 17(3): 285-288.
[88] LI X, ZHANG M, XIANG C, et al. Antiepileptic C21-steroids from the roots of Cynanchum otophyllum[J]. Journal of Asian Natural Products Research, 2015, 17(7): 724-732.
[89] YANG X X, BAO Y R, WANG S, et al. Steroidal glycosides from roots of Cynanchum otophyllum[J]. Chemistry of Natural Compounds, 2015, 51(4): 703-705.
[90] ZHANG M, LI X, XIANG C, et al. Cytotoxicity of pregnane glycosides of Cynanchum otophyllum[J]. Steroids, 2015, 104: 49-60.
[91] LI X, LUO Y, LI G P, et al. Pregnane glycosides from the antidepressant active fraction of cultivated Cynanchum otophyllum[J]. Fitoterapia, 2016, 110: 96-102.
[92] DONG J R, PENG X R, LU S Y, et al. Hepatoprotective steroids from roots of Cynanchum otophyllum[J]. Fitoterapia, 2019,136:104171.
[93] ZHAN Z J, BAO S M, ZHANG Y, et al. New immunomodulating polyhydroxypregnane glycosides from the roots of Cynanchum otophyllum C. K. Schneid[J]. Chemistry and Biodiversity, 2019, 16(6): e1900062.
[94] 匡海学. 中药化学实验方法学[M]. 北京:人民卫生出版社,2013:242.
[95] 钱玺丞. 两种云南药用植物的化学成分研究[D]. 昆明:昆明理工大学,2017.
[96] 张玉娥,丁惟培,阮金兰. 质谱法在C21甾体甙结构鉴定中的应用[J]. 福建药学杂志, 1994(1): 4-6.
[97] 曹小吉. C21甾体糖苷的质谱研究[D]. 杭州:浙江大学, 2006.
[98] 石慧, 崔炯谟, 赵余庆. 通光藤中C21甾苷类化学成分及13C-NMR在其结构研究中的应用[J]. 中草药, 2009, 40(S1): 23-26.
[99] 李祥, 张敉, 向诚, 等. 青阳参中C21甾体成分研究[J]. 中国中药杂志, 2014, 39(8): 1450-1456.
[1] 黄松, 王梦飞, 李燕林. 基于在线平台的旅游信息流流空间特征——以珠江—西江经济带核心城市为例[J]. 广西师范大学学报(自然科学版), 2021, 39(2): 162-173.
[2] 付文, 任宝平, 林建忠, 栾科, 王朋程, 王宾, 黎大勇, 周岐海. 济源太行山猕猴种群数量和保护现状[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 45-52.
[3] 郭永丽, 全洗强, 吴庆. 北方喀斯特地区地下水VOCs污染特征及健康风险——以山东省淄博市临淄区为例[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 102-113.
[4] 葛奕飞, 郑彦斌. 带有纠删或纠错性质的隐私保护信息检索方案[J]. 广西师范大学学报(自然科学版), 2020, 38(3): 33-44.
[5] 陈汹, 朱钰, 封科, 于同伟. 基于区块链的电力系统安全稳定控制终端身份认证[J]. 广西师范大学学报(自然科学版), 2020, 38(2): 8-18.
[6] 李飞羽, 翁小雄, 姚树申. 基于乘客群体出行时间间隔的标度律研究[J]. 广西师范大学学报(自然科学版), 2020, 38(1): 1-9.
[7] 宋尊荣, 秦佳双, 李明金, 马姜明, 钟凤跃, 杨章旗, 颜培栋. 南亚热带马尾松人工林根系生物量分布格局[J]. 广西师范大学学报(自然科学版), 2020, 38(1): 149-156.
[8] 汪建伟,邹艳丽,王瑞瑞,周建. 分布式电站网络结构及并网研究[J]. 广西师范大学学报(自然科学版), 2019, 37(3): 21-32.
[9] 李健康,韦笃取,罗晓曙,覃英华. 分布式发电系统与感性负载网络混沌同步控制[J]. 广西师范大学学报(自然科学版), 2019, 37(3): 33-41.
[10] 李旋菁, 李生强, 汪国海, 施泽攀, 周岐海. 广西猫儿山鸟类多样性和空间分布格局——基于样线法和红外相机技术[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 143-151.
[11] 韦宏金, 周喜乐, 金冬梅, 严岳鸿. 湖南蕨类植物增补[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 101-106.
[12] 梅春草,韦笃取*,罗晓曙. 分布式发电系统中感性负载的稳定性研究[J]. 广西师范大学学报(自然科学版), 2018, 36(2): 50-55.
[13] 林越,刘廷章,陈一凡,金勇,梁立新. 基于AP-HMM混合模型的充电桩故障诊断[J]. 广西师范大学学报(自然科学版), 2018, 36(1): 25-33.
[14] 王 意,邹艳丽,李 可,黄 李. 分布式电站入网方式对电网同步的影响[J]. 广西师范大学学报(自然科学版), 2017, 35(4): 24-31.
[15] 韦宏金,周喜乐,商 辉,严岳鸿. 广西蕨类植物新记录(Ⅲ)[J]. 广西师范大学学报(自然科学版), 2017, 35(4): 98-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄李, 邹艳丽, 王意, 李可. 分布式电站的3种入网方式比较研究[J]. 广西师范大学学报(自然科学版), 2017, 35(3): 30 -36 .
[2] 黄健, 王国华, 侯巧燕, 侯菊花. 口腔鳞状细胞癌中KLF6、p21和c-Jun的表达[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 94 -98 .
[3] 刘炜, 王浩, 方宝富. 基于二进制粒子群的救援仿真机器人决策[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 130 -133 .
[4] 李智, 庞柳, 刘国源, 杨智尚. 一种模型驱动的软件需求分析方法及技术支持[J]. 广西师范大学学报(自然科学版), 2013, 31(2): 19 -26 .
[5] 宋树祥. 奇数阶电流模式全通滤波器综合设计[J]. 广西师范大学学报(自然科学版), 2011, 29(3): 9 -13 .
[6] 张刘生, 潘成学, 李丽, 苏桂发, 黄婉云, 覃江克, 唐煌. 含环丙烷氨基酸残基的构象限制二肽的合成及其晶体结构研究[J]. 广西师范大学学报(自然科学版), 2011, 29(3): 37 -42 .
[7] 蒙祖强, 许珂, 周石泉. 不完备不一致决策系统的最大分布约简及计算方法[J]. 广西师范大学学报(自然科学版), 2011, 29(3): 89 -93 .
[8] 韦煜明, 王勇, 唐艳秋, 范江华. p-Laplacian算子时滞微分方程边值问题解的存在唯一性[J]. 广西师范大学学报(自然科学版), 2012, 30(2): 48 -53 .
[9] 林松, 尹长明. 两阶段Logit模型的惩罚广义估计方程估计的渐近性质[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 126 -130 .
[10] 王勋, 李廷会, 潘骁, 田宇. 基于改进模糊C均值聚类与Otsu的图像分割方法[J]. 广西师范大学学报(自然科学版), 2019, 37(4): 68 -73 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发