广西师范大学学报(自然科学版) ›› 2021, Vol. 39 ›› Issue (2): 162-173.doi: 10.16088/j.issn.1001-6600.2019050804

• CCIR2020 • 上一篇    

基于在线平台的旅游信息流流空间特征——以珠江—西江经济带核心城市为例

黄松1*, 王梦飞1, 李燕林2   

  1. 1.广西师范大学 历史文化与旅游学院, 广西 桂林 541001;
    2.广西师范大学 职业技术师范学院, 广西 桂林 541004
  • 收稿日期:2019-05-08 修回日期:2020-11-08 出版日期:2021-03-25 发布日期:2021-04-15
  • 通讯作者: 黄松(1967—),男,湖南常德人,广西师范大学教授,博士。E-mail:hs0773@126.com
  • 基金资助:
    国家自然科学基金(41361019);教育部“新世纪优秀人才支持计划”(NCET-12-0652);广西人文社会科学发展研究中心“科学研究工程·新农村发展研究专项项目”(XNC2019002)

Flow Space Features of Tourism Information Flow Based on Online Platforms:A Case Study of Core Cities in the Pearl River-West River Economic Belt

HUANG Song1*, WANG Mengfei1, LI Yanlin2   

  1. 1. College of History, Culture and Tourism, Guangxi Normal University, Guilin Guangxi 541001, China;
    2. College of Vocation-Technical Teachers, Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2019-05-08 Revised:2020-11-08 Online:2021-03-25 Published:2021-04-15

摘要: 提出基于在线平台的旅游信息流流空间特征定量研究普适方案,并以珠江—西江经济带为典型区域展开研究,通过5大在线旅游平台获取经济带11个核心城市2019年旅游信息流有效数据,构建旅游信息流关联矩阵,继而从流向与流量特征、规模特征、主从关系特征3方面,对经济带旅游信息流的流空间特征进行全面刻画,为该区旅游一体化发展提供科学依据,为旅游信息流研究提供新的视角与方法。结果表明:1)省会城市广州和南宁既是经济带旅游信息流的主要聚集城市又是主要输出城市,非省会城市中有特色旅游资源的崇左、百色是旅游信息流的主要聚集城市。省会城市之间和有特色旅游资源的非省会城市之间的顺、逆向旅游信息流流量基本相当,省会城市与有特色旅游资源的非省会城市之间旅游信息流顺、逆向流量差距悬殊;2)广州的旅游信息流规模远超经济带其他城市,有特色旅游资源的崇左、百色旅游信息流规模次之且两者基本相当,南宁、佛山旅游信息流规模再次,其他城市的旅游信息流规模均较低;3)经济带旅游信息流具有明显的流空间极化现象,广州是其主导型城市和规模最大的流空间节点。南宁、崇左、百色分别由第1大旅游信息优势流的次级主导发散型城市、次级主导聚集型城市与从属型城市转化为第2、3大优势流的次级主导聚集型城市、主导型城市与次级主导聚集型城市,表明旅游信息优势流的流向重心逐步向广西区内偏移,同时崇左、百色具有较为显著的次区域特征,是旅游信息流重要的流空间节点。其他城市均属于旅游信息流的从属型城市。

关键词: 旅游信息流, 流空间, 结构特征, 在线旅游平台, 核心城市, 珠江—西江经济带

Abstract: Tourism flow, as the foundation of tourism, is the essential areas of tourism geography research. Chinese scholars have made abundant achievements in the field of tourism flow research over the past 30 years. However, most of them focus on the tourist flow. However, the research on the tourism information flow which is the key factor that affects the tourist decision and then affects the tourism flow is rarely involved. Based on a universal scheme for quantitative research on the flow space structure features of tourism information flow, and taking the Pearl River-West River economic belt as the typical research area. 12 739 valid data of tourist information flow of 11 core cities in the Pearl River-West River economic belt (Guangzhou, Foshan, Yunfu, Zhaoqing, Nanning, Liuzhou, Laibin, Wuzhou, Baise, Chongzuo, Guigang) were obtained through 5 major online tourism platforms (Ctrip.com, Qunar.com, fliggy.com, ly.com and tuniu.com) in 2019. Firstly, the correlation matrix of tourism information flow is constructed. Then, this paper describes the flow space structure features of tourism information flow of 11 core cities in this region from 3 aspects: characteristics of direction and its rate, scale and principal-subordinate relationship of tourism information flow. Therefore, it provides a scientific basis for the construction and development of tourism integration of this area and a new perspective and method for the study of tourism flow. The results are obtained as follows: ①The provincial capital cities of Guangzhou and Nanning are not only the main gathering cities of tourism information flow in this region, but also the main export cities, and the aggregation and output of tourism information flow are 1.30, 2.55 and -0.13, 0.76 respectively. The non-provincial capital cities with special tourism resources of Chongzuo and Baise are the main gathering cities in this region, and the aggregation of tourism information flow are 1.74 and 1.55 respectively. The forward and backward flow of tourism information among the provincial capital cities and non-provincial capital cities with distinctive tourism resources is basically the same. Namely, the forward and backward flow of tourism information of Guangzhou$\leftrightarrows$Nanning and Chongzuo$\leftrightarrows$Baise are 0.55, 0.47, -0.25, -0.25. The difference of the forward and backward flow of tourism information between provincial capital cities and non-provincial capital cities with distinctive tourism resources is vast, such as Guangzhou$\leftrightarrows$Chongzuo (6.11, 0.11) and Guangzhou$\leftrightarrows$Baise (5.92, 0.26). ②Among 11 cities of this region, the scale of tourism information flow in Guangzhou (2.39) is far larger than that of other cities. Followed by Chongzuo (0.72) and Baise (0.62), with distinctive tourism resources, and their scales of tourism information flow are basically the same. Nanning (0.40), Foshan (0.22) take the fourth and fifth place. And other cities’ scales of tourism information flow are lower than the average level of this region. ③There is significant polarization of flow space for the tourism information flow in this region, and Guangzhou is the dominant city and the largest flow space node. Nanning, Chongzuo and Baise transformed from the sub-dominant divergent, gathering city and subordinate city of the first tourism information dominant flow to the sub-dominant gathering city, dominant city and sub-dominant gathering city of the second and third dominant flow respectively. It shows that the flow barycenter of tourism information dominant flow gradually shifts to Guangxi. At the same time, Baise and Chongzuo have obvious sub-regional characteristics. Other cities are subordinate cities of tourism information flow.

Key words: tourism information flow, flow space, structure features, online tourism platforms, core cities, Pearl River-West River economic belt

中图分类号: 

  • K902
[1] 吴泽智,陈性元,杨智,等.信息流控制研究进展[J].软件学报,2017,28(1):135-159.
[2] 唐顺铁,郭来喜.旅游流体系研究[J].旅游学刊,1998,13(3):38-41.
[3] 刘法建,张捷,章锦河,等.旅游流空间数据获取的基本方法分析:国内外研究综述及比较[J].旅游学刊,2012,27(6):101-109.
[4] SMALLWOOD C B,BECKLEY L E,MOORE S A.An analysis of visitor movement patterns using travel networks in a large marine park,north-western Australia[J].Tourism Management,2012,33(3):517-528.
[5] DE VITA G.The long-run impact of exchange rate regimes on international tourism flows[J].Tourism Management,2014,45:226-233.
[6] KIM J H,MOOSA I A.Forecasting international tourist flows to Australia:a comparison between the direct and indirect methods[J].Tourism Management,2005,26(1):69-78.
[7] BALLI F,BALLI H O,JEAN LOUIS R.The impacts of immigrants and institutions on bilateral tourism flows[J].Tourism Management,2016,52:221-229.
[8] 秦静,李郎平,唐鸣镝,等.基于地理标记照片的北京市入境旅游流空间特征[J].地理学报,2018,73(8):1556-1570.
[9] 阮文奇,郑向敏,李勇泉,等.中国入境旅游的“胡焕庸线”空间分布特征及驱动机理研究[J].经济地理,2018,38(3):181-189,199.
[10] 王永明,王美霞,吴殿廷,等.基于ZINB模型的中国省域间入境旅游流影响因素[J].经济地理,2018,38(11):234-240.
[11] 冯娜,李君轶.外向在线旅游信息流与入境旅游流的耦合分析:以美加入境旅游流为例[J].旅游学刊,2014,29(4):79-86.
[12] KORNELIUSSEN T,GREENACRE M.Information sources used by european tourists:A cross-national study[J].Journal of Travel Research,2017,57(2):193-205.
[13] CHUA A,SERVILLO L,MARCHEGGIANI E,et al.Mapping cilento:Using geotagged social media data to characterize tourist flows in southern Italy[J].Tourism Management,2016,57:295-310.
[14] TAN W K.The relationship between smartphone usage,tourist experience and trip satisfaction in the context of a nature-based destination[J].Telematics and Informatics,2017,34(2):614-627.
[15] MURNION S,HEALEY R G.Modeling distance decay effects in web server information flows[J].Geographical Analysis,1998,30(4):285-303.
[16] 张秋娈,路紫.旅游网站信息流距离衰减的集中度研究[J].地理科学,2011,31(7):885-890.
[17] KANNAN R,RAY L,SARANGI S.The structure of information networks[J].Economic Theory,2007,30(1):119-134.
[18] 徐敏,黄震方,曹芳东,等.基于在线预订数据分析的旅游流网络结构特征与影响因素:以长三角地区为例[J].经济地理,2018,38(6):193-202.
[19] LOZANO S,GUTIÉRREZ E.A complex network analysis of global tourism flows[J].International Journal of Tourism Research,2018,20(5):588-604.
[20] 闫闪闪,靳诚.基于多源数据的市域旅游流空间网络结构特征:以洛阳市为例[J].经济地理,2019,39(8):231-240.
[21] 路紫,赵亚红,吴士锋,等.旅游网站访问者行为的时间分布及导引分析[J].地理学报,2007,62(6):621-630.
[22] CASTELLES M.The informational city:information technology,economic restructuring and the urban-region progress[M].Oxford:Basil Blackwell,1989:146-147.
[23] 修春亮,魏冶.“流空间”视角的城市与区域结构[M].北京:科学出版社,2015:187-190.
[24] TAYLOR P J.Specification of the world city network[J].Geographical Analysis,2010,33(2):181-194.
[25] TOWNSEND A M.Network city and the global structure of the internet[J].American Behavioral Scientist,2001,44(10):1697-1716.
[26] GRUBESIC T H,O’KELLY M E.Using points of presence to measure accessibility to the commercial internet[J].The Professional Geographer,2002,54(2):259-278.
[27] 董超,修春亮,魏冶.基于通信流的吉林省流空间网络格局[J].地理学报,2014,69(4):510-519.
[28] 宋伟,李秀伟,修春亮.基于航空客流的中国城市层级结构分析[J].地理研究,2008,27(4):917-926.
[29] 冯兴华,修春亮,白立敏,等.基于公路交通流视角的吉林省城镇中心性及影响因素[J].经济地理,2019,39(1):64-72.
[30] 马丽亚,修春亮,冯兴华.多元流视角下东北城市网络特征分析[J].经济地理,2019,39(8):51-58.
[31] 孙中伟,路紫.流空间基本性质的地理学透视[J].地理与地理信息科学,2005,21(1):109-112.
[32] 孙九霞,周尚意,王宁,等.跨学科聚焦的新领域:流动的时间、空间与社会[J].地理研究,2016,35(10):1801-1818.
[33] ALMEIDA-SANTANA A,MORENO-GIL S.New trends in information search and their influence on destination loyalty:Digital destinations and relationship marketing[J].Journal of Destination Marketing &Management,2017,6(2):150-161.
[34] 姜博,修春亮,陈才.辽中南城市群城市流分析与模型阐释[J].经济地理,2008,28(5):853-856,861.
[35] 王聪,曹有挥,陈国伟.基于生产性服务业的长江三角洲城市网络[J].地理研究,2014,33(2):323-335.
[36] 王宁宁,陈锐,赵宇.基于信息流的互联网信息空间网络分析[J].地理研究,2016,35(1):137-147.
[37] BARNETT G A,CHON B,ROSEN D.The structure of the internet flows in cyberspace[J].Netcom,2001,15(1/2):61-80.
[38] HARGITTAI E.Weaving the western web:explaining differences in Internet connectivity among OECD countries[J].Telecommunications Policy,1999,23(10):701-718.
[1] 母丽丽, 顾斌, 陈美红, 张青梅, 李传起. 子午面磁层顶位形结构的MHD模拟研究[J]. 广西师范大学学报(自然科学版), 2012, 30(2): 17-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 白捷, 高海力, 王永众, 杨来邦, 项晓航, 楼雄伟. 基于多路特征融合的Faster R-CNN与迁移学习的学生课堂行为检测[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 1 -11 .
[2] 吴湘华, 钟祥贵. NS*-置换子群对有限群结构的影响[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 42 -47 .
[3] 胡锦铭, 韦笃取. 分数阶永磁同步电机的广义同步研究[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 14 -20 .
[4] 朱勇建, 罗坚, 秦运柏, 秦国峰, 唐楚柳. 基于光度立体和级数展开法的金属表面缺陷检测方法[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 21 -31 .
[5] 杨丽婷, 刘学聪, 范鹏来, 周岐海. 中国非人灵长类声音通讯研究进展[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 1 -9 .
[6] 宾石玉, 廖芳, 杜雪松, 许艺兰, 王鑫, 武霞, 林勇. 罗非鱼耐寒性能研究进展[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 10 -16 .
[7] 刘静, 边迅. 直翅目昆虫线粒体基因组的特征及应用[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 17 -28 .
[8] 李兴康, 钟恩主, 崔春艳, 周佳, 李小平, 管振华. 西黑冠长臂猿滇西亚种鸣叫行为监测[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 29 -37 .
[9] 和鑫明, 夏万才, 巴桑, 龙晓斌, 赖建东, 杨婵, 王凡, 黎大勇. 滇金丝猴主雄应对配偶雌性数量的理毛策略[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 38 -44 .
[10] 付文, 任宝平, 林建忠, 栾科, 王朋程, 王宾, 黎大勇, 周岐海. 济源太行山猕猴种群数量和保护现状[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 45 -52 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发