广西师范大学学报(自然科学版) ›› 2022, Vol. 40 ›› Issue (3): 194-201.doi: 10.16088/j.issn.1001-6600.2021071002

• 研究论文 • 上一篇    下一篇

基于可验证随机函数和BLS签名的拜占庭容错共识算法

白尚旺*, 马晓倩, 高改梅, 刘春霞, 党伟超   

  1. 太原科技大学 计算机科学与技术学院, 山西 太原 030024
  • 收稿日期:2021-07-10 修回日期:2021-09-09 出版日期:2022-05-25 发布日期:2022-05-27
  • 通讯作者: 白尚旺(1964—), 男, 山西太原人, 太原科技大学教授。E-mail: swbai@tyust.edu.cn
  • 基金资助:
    山西省应用基础研究项目(201901D111266); 太原科技大学科研启动基金(20192062); 山西省重点计划研发项目(201803D121048)

Byzantine Fault Tolerant Consensus Algorithm Based on Verifiable Random Function and BLS Signature

BAI Shangwang*, MA Xiaoqian, GAO Gaimei, LIU Chunxia, DANG Weichao   

  1. College of Computer Science and Technology, Taiyuan University of Science and Technology, Taiyuan Shanxi 030024, China
  • Received:2021-07-10 Revised:2021-09-09 Online:2022-05-25 Published:2022-05-27

摘要: 实用拜占庭容错(PBFT)算法可以容忍网络存在不超过节点总数三分之一的拜占庭节点,常被作为联盟链的共识算法。针对PBFT存在主节点选取规则简单、通信复杂度较高等问题,提出一种基于可验证随机函数(VRF)和BLS签名的拜占庭容错(VBBFT)共识算法。在VBBFT共识算法,VRF在共识节点中选取主节点,主节点作为消息收集和发送的协调者,并将节点间的信息交互过程转化为BLS签名过程,降低了节点间的通信复杂度,并保证了节点间的信息交互是安全的。仿真实验结果表明,VBBFT共识算法与PBFT算法相比,交易吞吐率提高了62.3%,时延降低了12%。

关键词: 实用拜占庭容错, 可验证随机函数, 联盟链, BLS签名, 共识算法

Abstract: The existence of no more than 1/3 of the total number of Byzantine nodes in the network can be tolerated by Practical Byzantine Fault Tolerance (PBFT) consensus algorithm. So PBFT consensus algorithm is often used as the consensus algorithm of the permissioned blockchains. However, the selection rule of the primary nodes is simple and the communication complexity is high in the PBFT consensus algorithm. A Byzantine fault tolerant consensus algorithm based on verifiable random function and BLS signature is proposed to improve PBFT consensus algorithm, which is called VBBFT consensus algorithm. In VBBFT consensus, Verifiable Random Functions is used to select primary nodes from the candidate set of consensus nodes. The master node is used as the coordinator of message collection and sending. At the same time , the process of information interaction between nodes is transformed into the process of BLS signature. This way can reduce the communication complexity and ensures the security of information interaction between nodes. The multi-node simulation results show that compared with Practical Byzantine Fault Tolerant consensus algorithm, the transaction throughput has increased by 62.3% and reduced the delay by 12% in VBBFT consensus algorithm.

Key words: practical Byzantine fault tolerance, verifiable random function, permissioned blockchain, BLS signature, consensus algorithm

中图分类号: 

  • TP311.13
[1]张亮,刘百祥,张如意,等.区块链技术综述[J].计算机工程,2019,45(5):1-12.DOI: 10.19678/j.issn.1000-3428.0053554.
[2]刘懿中,刘建伟,张宗洋,等.区块链共识机制研究综述[J].密码学报,2019,6(4):395-432.DOI:10.13868/j.cnki.jcr.000311.
[3]邵奇峰,金澈清,张召,等.区块链技术:架构及进展[J].计算机学报,2018,41(5):969-988.DOI: 10.11897/SP.J.1016.2018.00969.
[4]袁勇,倪晓春,曾帅,等.区块链共识算法的发展现状与展望[J].自动化学报,2018,44(11):2011-2022.DOI: 10.16383/j.aas.2018.c180268.
[5]夏清,窦文生,郭凯文,等.区块链共识协议综述[J].软件学报,2021,32(2):277-299.DOI:10.13328/j.cnki.jos.006150.
[6]KING S, NADAL S. PPCoin: peer-to-peer crypto-currency with proof-of-stake[EB/OL].(2012-08-19)[2021-09-09]. https://decred.org/research/king2012.pdf.
[7]LARIMER D. Delegated proof-of-stake consensus[EB/OL].(2014-04-03)[2021-09-09]. https://how.bitshares.works/en/master/technology/dpos.html.
[8]黄嘉成,许新华,王世纯.委托权益证明共识机制的改进方案[J].计算机应用,2019,39(7):2162-2167. DOI: 10.11772/j.issn.1001-9081.2018122527.
[9]付瑶瑶,李盛恩.授权股份证明共识机制的改进方案[J].计算机工程与应用,2020,56(19):48-54.
[10]吴梦宇,朱国胜,吴善超.基于工作量证明和权益证明改进的区块链共识机制[J].计算机应用,2020,40(8):2274-2278.
[11]MILUTINOVIC M, HE W, WU H, et al. Proof of luck: an efficient blockchain consensus protocol[C]// Proceedings of the 1st Workshop on System Software for Trusted Execution. New York:ACM,2016:1-6. DOI: 10.1145/3007788.3007790.
[12]CHEN L, XU L, SHAH N, et al.On security analysis of proof-of-elapsed-time (PoET)[C]// International Symposium on Stabilization, Safety, and Security of Distributed Systems, SSS 2017. Berlin:Springer,2017:282-297. DOI: 10.1007/978-3-319-69084-1_19.
[13]BENTOV I, LEE C, MIZRAHI A, et al.Proof of activity: extending bitcoin’s proof of work via proof of stake[J]. ACM SIGMETRICS Performance Evaluation Review, 2014, 42(3):34-37.
[14]CASTRO M, LISKOV B. Practical Byzantine fault tolerance[C]// Proceedings of the Third Symposium on Operating Systems Design and Implementation.New York:ACM, 1999:173-186.
[15]范捷,易乐天,舒继武.拜占庭系统技术研究综述[J].软件学报.2013,24(6):1346-1360.DOI: 10.3724/SP.J.1001.2013.04395.
[16]GUETA G G, ABRAHAM I, GROSSMAN S, et al.SBFT:a scalable and decentralized trust infrastructure[C]// 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks(DSN).Piscataway,NJ: IEEE,2019: 568-580.
[17]ZHANG J J, RONG Y Y, CAO J N, et al.DBFT: a Byzantine fault tolerant protocol with graceful performance degradation[C]// 2019 38th Symposium on Reliable Distributed Systems (SRDS). Piscataway,NJ: IEEE, 2019:123-132.DOI: 10.1109/SRDS47363.2019.00023.
[18]黄冬艳,李浪,陈斌,等. RBFT:基于Raft集群的拜占庭容错共识机制[J].通信学报,2021,42(3):209-219.
[19]陈佳伟,冼祥斌,杨振国,等.结合BLS聚合签名改进实用拜占庭容错共识算法[J].计算机应用研究,2021,38(7):1952-1955,1962.DOI:10.19734/j.issn.1001-3695.2020.12.0403.
[20]MICALI S, RABIN M, VADHAN S. Verifiable random functions[C]// 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).Piscataway,NJ: IEEE, 1999:120-130. DOI: 10.1109/SFFCS.1999.814584.
[21]佟铮. 基于区块链的公开可验证随机数生成方法研究[D].武汉:武汉理工大学,2018.
[22]GILAD Y, HEMO R, MICALI S, et al. Algorand: scaling byzantine agreements for cryptocurrencies[C]// Proceedings of the 26th Symposium on Operating Systems Principles. New York: ACM, 2017:51-68.
[23]HANKE T, MOVAHEDI M, WILLIAMS D. Dfinity technology overview series, consensus system[EB/OL].(2018-01-23)[2021-09-09]. https://dfinity.org/pdf-viewer/library/dfinity-consensus.pdf.
[24]DAVID B, GAŽI P, KIAYLAS A, et al. Ouroboros Praos: an adaptively-secure, semi-synchronous proof-of-stake Blockchain[C]// Advances in Cryptology-EUROCRYPT 2018. Berlin: Spring, 2018:66-98. DOI:10.1007/978-3-319-78375-8_3.
[25]BONEH D, BOYEN X. Short signatures without random oracles[C]// Advances in Cryptology-EUROCRYPT 2004. Berlin: Springer, 2004: 56-73. DOI:10.1007/978-3-540-24676-3_4.
[26]BONEH D, DRIJVERS M, NEVEN G. Compact multi-signatures for smaller blockchains[C]// Advances in Cryptology-ASIACRYPT 2018. Berlin: Springer, 2018:435-464. DOI: 10.1007/978-3-030-03329-3_15.
[1] 李慕航, 韩萌, 陈志强, 武红鑫, 张喜龙. 面向复杂高效用模式的挖掘算法综述[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 13-30.
[2] 陈建辉, 钟宁. 基于数据脑的神经图像元数据立方体构建技术[J]. 广西师范大学学报(自然科学版), 2011, 29(1): 102-108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 艾艳, 贾楠, 王媛, 郭静, 潘东东. 多性状多位点遗传关联分析的统计方法研究及其应用进展[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 1 -14 .
[2] 白德发, 徐欣, 王国长. 函数型数据广义线性模型和分类问题综述[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 15 -29 .
[3] 曾庆樊, 秦永松, 黎玉芳. 一类空间面板数据模型的经验似然推断[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 30 -42 .
[4] 张治飞, 段谦, 刘乃嘉, 黄磊. 基于Jackknife互信息的高维非线性回归模型研究[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 43 -56 .
[5] 杨迪, 方扬鑫, 周彦. 基于MEB和SVM方法的新类别分类研究[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 57 -67 .
[6] 陈钟秀, 张兴发, 熊强, 宋泽芳. 非对称DAR模型的估计与检验[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 68 -81 .
[7] 杜锦丰, 王海荣, 梁焕, 王栋. 基于表示学习的跨模态检索方法研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 1 -12 .
[8] 李慕航, 韩萌, 陈志强, 武红鑫, 张喜龙. 面向复杂高效用模式的挖掘算法综述[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 13 -30 .
[9] 晁睿, 张坤丽, 王佳佳, 胡斌, 张维聪, 韩英杰, 昝红英. 中文多模态知识库构建[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 31 -39 .
[10] 李正光, 陈恒, 林鸿飞. 基于双向语言模型的社交媒体药物不良反应识别[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 40 -48 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发