广西师范大学学报(自然科学版) ›› 2022, Vol. 40 ›› Issue (2): 170-181.doi: 10.16088/j.issn.1001-6600.2021032203

• • 上一篇    下一篇

华南西部土壤Cd、Pb地球化学基线研究及评价

毛政利1,2*, 赵华美3   

  1. 1.百色学院 土木建筑工程学院,广西 百色 533000;
    2.广西高校桂西生态环境分析和污染控制重点实验室(百色学院),广西 百色 533000;
    3.百色学院 图书馆,广西 百色 533000
  • 收稿日期:2021-03-22 修回日期:2021-05-15 发布日期:2022-05-31
  • 通讯作者: 毛政利(1967—),男,湖南武冈人,百色学院教授,博士。E-mail:zhlmao@163.com
  • 基金资助:
    广西自然科学基金(2017GXNSFAA198146)

Study on Geochemical Baseline and Pollution Assessment of Heavy Metals Cd and Pb in Soil of Western South China

MAO Zhengli1,2*, ZHAO Huamei2   

  1. 1. School of Civil Engineering and Architecture, Baise University, Guangxi Baise 533000, China;
    2. Guangxi Colleges and Universities Key Laboratory of Regional Environments Analysis and Pollution Control of West Guangxi (Baise University), Guangxi Baise 533000, China;
    3. Library of Baise University, Guangxi Baise 533000, China
  • Received:2021-03-22 Revised:2021-05-15 Published:2022-05-31

摘要: 在华南西部的右江河谷地区按照10 km×3 km的网度采集71个浅层土壤样品,分析测试样品中Cd和Pb的含量,应用累积频率法和分形分析方法分析计算其环境地球化学基线值,以此为评价标准对本地区浅层土壤的Cd、Pb污染进行评价。结果表明:2种分析计算方法所得到的环境地球化学基线值相差不大,其中Cd的基线上限相差10.3%,基线值相差9.4%,Pb的基线上限相差3.6%,基线值相差6.7%,说明2种方法的计算结果都合理,本文取2种方法的算术平均值作为其环境地球化学基线值,即Pb为25.44 mg/kg,Cd为0.304 mg/kg。Cd的单因子污染评价结果显示轻度污染占67.61%、中度污染占23.94%、重度污染占5.63%,Pb的单因子污染评价显示轻度污染占53.52%、中度污染占25.35%、重度污染占11.27%;内梅罗综合污染评价显示轻度污染占52.11%、中度污染占33.88%、重度污染占8.45%,显示出本区以轻度污染为主,中度污染次之,少数地区达到了重度污染,且中、重度污染区主要分布在研究区东南部和西北部,在中西部地区有一个中度污染点。大多数样品Cd和Pb的地累积指数小于1,说明本区Cd和Pb的累积效应不很明显,但在研究区的东南部Cd和Pb的地累积指数以及中北部Pb的地累积指数达到了中度污染水平。这些均说明研究区以东铝土资源开发和研究区中部火电厂的生产活动对该区Cd、Pb污染有较大的影响。

关键词: 环境地球化学基线, 分形分析, 污染评价, Cd, Pb, 右江河谷

Abstract: In Youjiang River basin, 71 shallow soil samples were collected according to the network density of 10 km×3 km, and the contents of Cd and Pb were analyzed and tested. Cumulative frequency method and fractal analysis method were used to analyze and calculate their environmental geochemical baseline values, so as to assess the Cd and Pb pollution of shallow soil in this area. The results showed that, there was not much difference between the environmental geochemical baseline obtained by the two methods, among which Cd had a difference of 10.3% in upper limit of baseline, 9.4% in baseline value, Pb had a difference of 3.6% in upper limit of baseline, 6.7% in baseline value, indicating that the calculation results of the two methods were reasonable. In this study, the arithmetic average of the two methods was taken as the environmental geochemical baseline values, that was, Pb was 25.44 mg/kg, and Cd was 0.304 mg/kg. The single factor pollution assessment results of Cd showed that the light pollution, intermediate pollution and heavy pollution accounted for 67.61%, 23.94% and 5.63%, respectively, while the single factor pollution assessment of Pb showed that the light pollution, intermediate pollution and heavy pollution accounted for 53.52%, 25.35% and 11.27%, respectively. Nemerow comprehensive pollution assessment showed that light pollution, intermediate polltuion and heavy pollution accounted for 52.11%, 33.88% and 8.45%, respectively. This showed that the pollution in this area was dominated by light pollution, followed by moderate pollution, only a small number of samples were severely polluted. Moderate and severe pollution areas were mainly distributed in the southeast and northwest of the study area, and there was a moderate pollution point in the central and western regions. The geoaccumulation index of Cd and Pb of most samples was less than 1, indicating that the accumulation effect of Cd and Pb in this area was not obvious. However, the geoaccumulation index of Cd and Pb in the southeastern part of the study area and the north-central part of the study area reached the level of moderate pollution. All these indicated that the development of bauxite resources in the east area and the production activities of the thermal power plant in the middle area had a great impact on the pollution of Cd and Pb in the area.

Key words: environmental geochemical baseline, fractal analysis, pollution assessment, Cd, Pb, Youjiang River basin

中图分类号: 

  • X53
[1] JIANG Y F, SHI L P, GUANG A L, et al. Contamination levels and human health risk assessment of toxic heavy metals in street dust in an industrial city in Northwest China[J]. Environmental Geochemistry and Health, 2018, 40(5): 2007-2020.
[2] 陈春强, 邓华, 陈小梅. 广西3个锰矿恢复区农作物重金属健康风险评价[J]. 广西师范大学学报(自然科学报), 2017, 35(4): 127-135.
[3] CHEN H Y, TENG Y G, LU S J, et al. Contamination features and health risk of soil heavy metals in China[J]. Science of the Total Environment, 2015, 512/513: 143-153.
[4] YANG Q Q, LI Z Y, LU X N, et al. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment[J]. Science of the Total Environment, 2018, 642: 690-700.
[5] 宋志廷, 赵玉杰, 周其文, 等. 基于地质统计及随机模拟技术的天津武清区土壤重金属源解析[J]. 环境科学, 2016, 37(7): 2756-2762.
[6] 刘胜然, 王铁宇, 汤洁, 等. 典型城市单元的土壤重金属溯源方法与实证研究[J]. 生态学报, 2019, 39(4): 1278-1289.
[7] MAO Z L, ZHAO H M, QIN Z P. Assessment of Cd-Pb pollution in soils of the Youjiang River basin, South China[J]. Eurasian Soil Science, 2020, 53(6): 829-837.
[8] 毛政利, 覃卓萍, 黄尚明. 右江河谷地区土壤重金属 Cd、Pb 含量的空间分布特征[J]. 土壤通报, 2020, 51(3): 709-716.
[9] 赵辛金, 吴天生, 钟晓宇, 等. 广西典型岩溶区重金属高背景区农田土壤生态风险综合评价[J]. 江苏农业科学, 2020, 48(22): 252-261.
[10] 宋波, 张云霞, 庞瑞, 等. 广西西江流域农田土壤重金属含量特征及来源解析[J]. 环境科学, 2018, 39(9): 4317-4326.
[11] CHEN S B, WANG M, LI S S, et al. Overview on current criteria for heavy metals and its hint for the revision of soil environmental quality standards in China[J]. Journal of Integrative Agriculture, 2018, 17(4): 765-774.
[12] 彭丽梅, 赵理, 周悟, 等. 广州市从化区耕地土壤重金属风险评价[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 118-129.
[13] 王幼奇, 白一茹, 王建宇. 基于GIS的银川市不同功能区土壤重金属污染评价及分布特征[J]. 环境科学, 2016, 37(2): 710-716.
[14] LI Y Y, QU X D, ZHANG M, et al. Anthropogenic impact and ecological risk assessment of hallium and cobalt in Poyang Lake using the geochemical baseline[J]. Water, 2018, 10(11): 1703-1716.
[15] 李雨静, 李社宏, 廖红为, 等. 云南省蒙自东山岩溶区土壤重金属污染评价[J]. 桂林理工大学学报, 2019, 39(3): 700-705.
[16] ZHOU Y, GAO L, XU D Y, et al. Geochemical baseline establishment, environmental impact and health risk assessment of vanadium in lake sediments, China[J]. Science of the Total Environment, 2019, 660: 1338-1345.
[17] 高杨, 许东升, 李琦. 宿州市表层土壤重金属元素环境地球化学基线研究[J]. 地球与环境, 2018, 46(5): 444-450.
[18] TURNER O, HOLLIS S, GÜVEN J, et al. Establishing a geochemical baseline for the lower carboniferous stratigraphy of the Rathdowney trend, Irish Zn-Pb orefield[J]. Journal of Geochemical Exploration, 2019, 196(1): 259-269.
[19] 丁海霞. 金昌市郊农田土壤重金属的地球化学基线值研究[J]. 环境研究与监测, 2018, 31(2): 1-5.
[20] 贾晗, 刘军省, 王春光, 等. 基于铜陵地区地球化学基线的土壤重金属污染评价及分析[J]. 环境工程, 2019, 37(5): 50-55.
[21] 汪庆华, 董岩翔, 周国华, 等. 浙江省土壤地球化学基准值与环境背景值[J]. 生态与农村环境学报, 2007, 23(2): 81-88.
[22] COVELLI S, FONTOLAN G. Application of a normalization procedure in determining regional geochemical baselines[J]. Environmental Geology, 1997, 30(1/2): 34-45.
[23] SALMINEN R, GREGORAUSKIEN V. Considerations regarding the definition of a geochemical baseline of elements in the surficial materials in areas differing in basic geology[J]. Applied Geochemistry, 2000, 15(5): 647-653.
[24] DONOGHUE J F, RAGLAND P C, CHEN Z Q, et al. Standardization of metal concentrations in sediments using regression residuals: an example from a large lake in Florida, USA[J]. Environmental Geology, 1998, 36(1/2): 65-76.
[25] ISLAM M S, HOSSAIN M B, MATIN A, et al. Assessment of heavy metal pollution distribution and source apportionment in the sediment from Feni River estuary, Bangladesh[J]. Chemosphere, 2018, 202: 25-32.
[26] ZHANG H, YU M, XU H J. et al. Geochemical baseline determination and contamination of heavy metals in the urban topsoil of Fuxin City, China[J]. Journal of Arid Land, 2020, 12(6): 1001-1017.
[27] 孙厚云, 卫晓锋, 甘凤伟, 等. 承德市滦河流域土壤重金属地球化学基线厘定及其累积特征[J]. 环境科学, 2019, 40(8): 3753-3763.
[28] ZONG Y T, XIAO Q, LU S G. Distribution, bioavailability, and leachability of heavy metals in soil particle size fractions of urban soils (Northeastern China)[J]. Environmental Science and Pollution Research International, 2016, 23(14): 14600-14607.
[29] 武梦娟, 牛洁, 张虎才, 等. 云南抚仙湖沉积物粒度分维特征及环境意义[J]. 云南大学学报(自然科学版), 2019, 41(4): 738-745.
[30] 代豫杰, 郭建英, 董智, 等. 不同沙生灌木下土壤颗粒及重金属空间分布特征[J]. 环境科学, 2017, 38(11): 4809-4818.
[31] 姚凌阳, 谢淑云, 张陇和, 等. 欧洲土壤重金属元素多重分形特征及其环境意义[J]. 安徽农业科学, 2016, 44(24): 138-146.
[32] 郗伟华, 刘任涛, 赵娟, 等. 干旱风沙区路域柠条灌丛林地土壤重金属分布及其与土壤分形维数的关系[J]. 水土保持研究, 2018, 25(6): 196-202.
[33] 宋书巧, 胡伟. 基于ArcGIS与分形理论确定土壤重金属异常下限值: 以喀斯特小流域Cd为例[J]. 湖北农业科学, 2015, 54(6), 1361-1364.
[34] MATSCHULLAT J, OTTENSTEIN R, REIMANN C. Geochemical background:can we calculate it?[J]. Environmental Geology, 2000, 39(9): 990-1000.
[35] THONGYUAN S, KHANTAMOON T, AENDO P, et al. Ecological and health risk assessment, carcinogenic and non-carcinogenic effects of heavy metals contamination in the soil from municipal solid waste landfill in Central, Thailand[J]. Human and Ecological Risk Assessment: An International Journal, 2021, 27(4): 876-897.
[36] 李方舟, 章臻, 张昭天, 等. 厦门岛内不同功能区土壤与灰尘重金属污染的特征及评估[J]. 安全与环境学报, 2017, 17(2): 719-724.
[37] VERMA F, SINGH S, SINGH J, et al. Assessment of heavy metal contamination and its effect on earthworms in different types of soils[J]. International Journal of Environmental Science and Technology, 2021: 03297. DOI: 10.1007/s13762-021-03297-z.
[38] 杨安, 王艺涵, 胡健, 等. 青藏高原表土重金属污染评价与来源解析[J]. 环境科学, 2020, 41(2): 886-894.
[39] MULLER G. Index of geoaccumulation in sediments of the Rhine River[J]. GeoJournal, 1969, 2: 108-118.
[40] 吴冠美, 覃雪梅, 刘云霞, 等. 广西靖西县田七种植区土壤重金属的调查与分析[J]. 环境保护科学, 2017, 43(1): 123-128.
[41] 李樋, 李随民, 王轶, 等. 内蒙古东来地区土壤重金属元素地球化学基线值研究[J]. 河北地质大学学报, 2020, 43(2): 23-8, 46.
[42] 孙厚云, 卫晓锋, 贾凤超, 等. 承德伊逊河钒钛磁铁矿小流域土壤重金属地球化学基线及生态风险累积效应[J]. 地质学报, 2021, 95(2): 588-604.
[43] 朱晓东, 韦朝阳, 杨芬. 包头-白云鄂博地区重金属基线值的厘定及其在重金属污染分级评价中的应用[J]. 自然资源学报, 2016, 31(2): 310-320.
[1] 晁睿, 张坤丽, 王佳佳, 胡斌, 张维聪, 韩英杰, 昝红英. 中文多模态知识库构建[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 31-39.
[2] 周俊, 陈舒曼, 邢兵, 陈雅静, 李银玲, 何柳, 周祖平, 蒲仕明. 正常来源CD4+CD25+细胞在小鼠肺癌模型中的抗肿瘤作用[J]. 广西师范大学学报(自然科学版), 2022, 40(2): 191-199.
[3] 颜海波, 邓罡, 姜云卢. 基于MRCD估计的多元线性回归模型的稳健估计[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 175-186.
[4] 郑海霞, 王月, 陈芬, 勾朝阳, 郑庆荣. 五台山南台土壤重金属特征及污染风险评价[J]. 广西师范大学学报(自然科学版), 2018, 36(4): 99-107.
[5] 兰宇卫, 易其磊, 黄艳桃, 刘锦玲, 谭言芳. 微波辅助合成CdTe量子点及在太阳能电池中的应用[J]. 广西师范大学学报(自然科学版), 2017, 35(3): 104-110.
[6] 张秀容, 李传起, 陆叶, 张东闯, 孔一卜, 付学谦, 范庆斌. SAC-OCDMA系统中二维地址码设计及性能研究[J]. 广西师范大学学报(自然科学版), 2016, 34(2): 28-34.
[7] 唐宇庭, 黄佳玉, 王维生, 张超兰. 低分子有机酸对油菜吸收Cd和Zn的影响[J]. 广西师范大学学报(自然科学版), 2012, 30(2): 127-131.
[8] 赵发兰, 宾石玉, 陈敦学, 农小献, 刘希良. 斑鳜肌球蛋白轻链1基因cDNA的克隆及其分析[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 99-103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 胡锦铭, 韦笃取. 不同阶次分数阶永磁同步电机的混合投影同步[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 1 -8 .
[2] 武康康, 周鹏, 陆叶, 蒋丹, 闫江鸿, 钱正成, 龚闯. 基于小批量梯度下降法的FIR滤波器[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 9 -20 .
[3] 刘东, 周莉, 郑晓亮. 基于SA-DBN的超短期电力负荷预测[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 21 -33 .
[4] 张伟彬, 吴军, 易见兵. 基于RFB网络的特征融合管制物品检测算法研究[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 34 -46 .
[5] 王金艳, 胡春, 高健. 一种面向知识编译的OBDD构造方法[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 47 -54 .
[6] 逯苗, 何登旭, 曲良东. 非线性参数的精英学习灰狼优化算法[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 55 -67 .
[7] 李莉丽, 张兴发, 李元, 邓春亮. 基于高频数据的日频GARCH模型估计[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 68 -78 .
[8] 李松涛, 李群宏, 张文. 三自由度碰撞振动系统的余维二擦边分岔与混沌控制[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 79 -92 .
[9] 赵红涛, 刘志伟. λ重完全二部3-一致超图λK(3)n,n分解为超图双三角锥[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 93 -98 .
[10] 李梦, 曹庆先 , 胡宝清. 1960—2018年广西大陆海岸线时空变迁分析[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 99 -108 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发