|
广西师范大学学报(自然科学版) ›› 2017, Vol. 35 ›› Issue (3): 104-110.doi: 10.16088/j.issn.1001-6600.2017.03.013
兰宇卫1, 2*, 易其磊1, 黄艳桃1, 刘锦玲1, 谭言芳1
LAN Yuwei1,2*, YI Qilei1, HUANG Yantao1, LIU Jinling1, TAN Yanfang1
摘要: 以CdCl2和Na2TeO3为反应物,巯基丙酸作为稳定剂和还原剂,通过微波辅助法快速合成高质量CdTe量子点,用CdTe量子点和染料N719共敏化TiO2纳米管阵列,以此为光阳极组装敏化太阳能电池。采用X射线衍射、紫外-可见吸收光谱、荧光光谱、扫描电镜和透射电镜等分析手段对样品进行表征,最后测定太阳能电池的光电转化效率。相对于传统CdTe量子点制备过程,采用巯基丙酸同时作为还原剂和稳定剂可以将以往的两步反应简化为一步,不需要复杂操作和氮气保护,减少了实验过程中有毒气体的排放;同时采用微波辅助法制备,还可以使量子点的生长更加快速。随着微波加热时间的增加,制得的量子点粒径增大,荧光发射峰红移,紫外可见吸收峰红移,量子产率最高达到63.6%。以CdTe量子点和染料N719共敏化TiO2纳米管阵列为光阳极的太阳能电池短路电流密度达到3.82 mA/cm2,开路电压为0.518 V,填充因子为0.32,光电转换效率达到0.63%,比未敏化太阳能电池光电转化效率高出152%。
中图分类号:
[1] CHE Dongchen, ZHU Xiaoxu, WANG Hongzhi, et al. Aqueous synthesis of high bright and tunable near-infrared AgInSe2-ZnSe quantum dots for bioimaging[J]. Journal of Colloid and Interface Science, 2016, 463:1-7. [2] DROSEROS N, SEINTIS K, FAKIS M, et al. Steady state and time resolved photoluminescence properties of CuInS2/ ZnS quantum dots in solutions and in solid films[J]. Journal of Luminescence, 2015, 167:333-338. [3] CHEN Jianqiu, AN Xiao, ZHANG Zhengwei, et al. The synthesis and modification of CdTe/CdS core shell quantum dots[J]. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, 2015, 151:506-509. [4] MAJEED S, LI Dan, GAO Wenyue, et al. Aqueous synthesis of tunable highly photoluminescent CdTe quantum dots using rongalite and bioimaging application[J]. Chinese Journal of Analytical Chemistry, 2015, 43(12):e101-e107. [5] HUMAYUN M A, RASHID M A, MALEK F. Power emission enhancement of light emitting diode by using InN based quantum dot[J]. Procedia-Social and Behavioral Sciences, 2015, 195:2401-2406. [6] PANG Lili, CUI Hongjing, LIU Yu, et al. Anti-VEGF antibody conjugated CdHgTe quantum dots as a fluorescent probe for imaging in living mouse[J]. Journal of Luminescence, 2016, 173:274-278. [7] CHEN Qian, SONG Jiahui, ZHOU Chunyan, et al. Application research of CdS:Eu3+ quantum dots-sensitized TiO2 nanotube solar cells[J]. Materials Science in Semiconductor Processing, 2016, 46:53-58. [8] ZHANG Jie, CHEN Qiuhang, ZHANG Wanlu, et al. Microwave-assisted aqueous synthesis of transition metal ions doped ZnSe/ZnS core/shell quantum dots with tunable white-light emission[J]. Applied Surface Science, 2015, 351:655-661. [9] LI Hua, SHAO Fangqi, HUANG Hong, et al. Eco-friendly and rapid microwave synthesis of green fluorescent graphitic carbon nitride quantum dots for vitro bioimaging[J]. Sensors and Actuators B Chemical, 2015, 226:506-511. [10] 焦杭州, 梁振华, 彭桂花, 等. 水溶性CdTe量子点在金属离子检测中的尺寸效应[J]. 广西师范大学学报(自然科学版), 2014, 32(2):106-110. [11] LI Ran, ZHAO Yin, HOU Ruien, et al. Enhancement of power conversion efficiency of dye sensitized solar cells by modifying mesoporous TiO2, photoanode with Al-doped TiO2, layer[J]. Journal of Photochemistry and Photobiology A Chemistry, 2016, S319-320:62-69. [12] ZHANG Changneng, JIANG Ling, MO Li’e, et al. Electrochemical investigation of Li+ ions in the electrolyte on the performance of dyed Mg2+-doped TiO2 solar cells[J]. Journal of Photochemistry and Photobiology A Chemistry, 2016, 321:19-23. [13] ZHANG Putao, HU Zhiqiang, WANG Yan, et al. Enhanced photovoltaic properties of dye-sensitized solar cell based on ultrathin 2D TiO2, nanostructures[J]. Applied Surface Science, 2016, 368:403-408. [14] MEHDI M K, MASOUD S N, MOSTAF H M, et al. Synthesis and characterization of CuInS2 quantum dot in the presence of novel precursors and its application in dyes solar cells[J]. Materials Letters, 2015, 145:99-103. [15] USHA K, KUMBHAKAR P, MONDAL B. Effect of Ag-doped TiO2 thin film passive layers on the performance of photo-anodes for dye-sensitized solar cells[J]. Materials Science in Semiconductor Processing, 2016, 43:17-24. [16] 兰章, 吴季怀, 林建明, 等. 水热法可控合成二氧化钛纳米晶及其在染料敏化太阳能电池中的应用[J]. 中国科学:化学, 2012(7):1029-1034. [17] GAKHAR R, SMITH Y R, MISRA M, et al. Photoelectric performance of TiO2 nanotube array photoelectrodes sensitized with CdS0.54Se0.46 quantum dots[J]. Applied Surface Science, 2015, 355:1279-1288. [18] SARMA B, SMITH Y R, MOHANTY S K, et al. Electrochemical deposition of CdO on anodized TiO2, nanotube arrays for enhanced photoelectrochemical properties[J]. Materials Letters, 2012, 85(20):33-36. [19] 杨传铮, 姜传海. 衍射线宽化的线形分析和微结构表征[J]. 理化检验(物理分册), 2014, 50(9):708-713. [20] JIANG Luwen, ZHOU Jing, YANG Xingzhi, et al. Microwave-assisted synthesis of surface-passivated doped ZnSe quantum dots with enhanced fluorescence[J]. Chemical Physics Letters, 2011, 510(1/3):135-138. [21] KALASAD M N, RABINAL M K, MULIMANI B G. Ambient synthesis and characterization of high-quality CdSe quantum dots by an aqueous route[J]. Langmuir, 2009, 25(21):12729-12735. [22] 甘婷婷, 张玉钧, 肖雪, 等. 以巯基丙酸为稳定剂的水溶性CdTe量子点的水热合成及表征[J]. 发光学报, 2012, 33(12):1309-1314. [23] YU H, ZHANG Shanqing, ZHAO Huijun, et al. High-performance TiO2 photoanode with an efficient electron transport network for dye-sensitized solar cells[J]. The Journal of Physical Chemistry C, 2009, 113(36):16277-16282. [24] 王蓉, 张海燕, 王文广,等. 二氧化钛阵列-二氧化钛/石墨烯颗粒复合结构光阳极对染料敏化太阳能电池的改善[J]. 光学学报, 2013(12):171-176. |
No related articles found! |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |