广西师范大学学报(自然科学版) ›› 2017, Vol. 35 ›› Issue (3): 111-118.doi: 10.16088/j.issn.1001-6600.2017.03.014

• • 上一篇    下一篇

氢化物发生-罗丹明6G荧光分光光谱法测定痕量As

李重宁1, 2, 杨铎2, 潘宏程1*, 温桂清2, 梁爱惠2, 蒋治良2*   

  1. 1.桂林理工大学化学与生物工程学院,广西桂林541006;
    2. 广西师范大学环境与资源学院,广西桂林541004
  • 出版日期:2017-07-25 发布日期:2018-07-25
  • 通讯作者: 蒋治良(1965—),男,广西全州人,广西师范大学教授,博导。E-mail: zljiang@mailbox.gxnu.edu.cn
    潘宏程(1975—),男,广西平乐人,桂林理工大学教授,博士。E-mail:hcpan@163.com
  • 基金资助:
    国家自然科学基金(21367005,21465006,21477025,21667006);广西自然科学基金(2013GXNSFFA019003)

Hydride Generation-Rhodamine 6G Fluorescence Method forthe Determination of Trace Arsenic

LI Chongning1,2, YANG Duo2, PAN Hongcheng1*, WEN Guiqing2, LIANG Aihui2, JIANG Zhiliang2*   

  1. 1. College of Chemistry and Bioengineering, Guilin University of Technology, Guilin Guangxi 541006;
    2. College ofEnvironment and Resource, Guangxi Normal University, Guilin Guangxi 541004, China
  • Online:2017-07-25 Published:2018-07-25

摘要: 本文建立了以Rh6G-I-3体系荧光光谱法测量痕量As的方法。在硫酸介质中,以硼氢化钠(NaBH4)为还原剂,可将As还原为砷化氢(AsH3)气体,该气体可还原I-3。当I-3与罗丹明6G(Rh6G)形成缔合物微粒时,体系在562 nm处的荧光信号较弱,随着I-3被AsH3被还原,体系中游离的Rh6G浓度增大,在562 nm处的荧光信号增强。在选定条件下,As浓度在0.011~0.997 mg/L与体系荧光增强值ΔF562呈线性关系,线性回归方程为ΔF562=825.1c-26.8,检出限为6.28 μg/L。据此建立一个检测As的荧光光谱法。

关键词: 砷, 氢化物发生, 罗丹明6G, 荧光法

Abstract: This paper introduces a new fluorescence method for the detection of trace arsenic in the Rh6G-I3 system. In sulfuric acid medium, arsenic is reduced by NaBH4 to form AsH3 which can reduce I-3 into I-. With I-3 conjugating with rhodamine 6G (Rh6G) to form Rh6G-I3 associated particles, the fluorescence intensity of Rh6G becomes weak at 562 nm. As I-3 ion is reduced by AsH3 resulting in the concentration increase of free Rh6G, its fluorescence intensity increases. Under the selected conditions, the increasing values (ΔF562) of the fluorescence intensity at 562 nm is linear in the range of 0.011~0.997 mg/L As, with the regression equation of ΔF = 825.1c-26.8 and a detection limit of 6.28 μg/L. Thus, a new fluorescence method for the detection of As was set up.

Key words: arsenic, hydride generation, rhodamine 6G, fluorescence

中图分类号: 

  • O657.3
[1] 王萍, 王世亮, 刘少卿, 等. 砷的发生、形态、污染源及地球化学循环[J]. 环境科学与技术, 2010, 33(7): 90-97.
[2] National Research Council. Arsenic in drinking water[M]. Washington D C: National Academy Press, 1999:12-18.
[3] CULLEN W R, REIMER K J. Arsenic speciation in the environment[J]. Chemical Reviews, 1989, 89(4): 713-764.
[4] 李景岩. 砷对健康的影响[J]. 中国地方病防治杂志, 2006, 21(1): 21-23.
[5] 于云江, 王菲菲, 房吉敦, 等. 环境砷污染对人体健康影响的研究进展[J]. 环境与健康杂志, 2007, 24(3): 181-183.
[6] MANDAL B K, SUZUKI K T. Arsenic round the world: a review[J]. Talanta, 2002, 58: 201-235.
[7] LIAO X Y, CHEN T B, XIE H, et al. Soil As contamination and its risk assessment in areas near the industrial districts of Chenzhou City, Southern China[J]. Environment International, 2005, 31: 791-798.
[8] WU Y G, ZHAN S S, WANG F Z, et al. Cationic polymers and aptamers mediated aggregation of gold nanoparticles for the colorimetric detection of arsenic(III) in aqueous solution[J]. Chemical Communications, 2012, 48: 4459-4461.
[9] KALLURI J R, ARBNESHI T, KHAN S A, et al. Use of gold nanoparticles in a simple colorimetric and ultrasensitive dynamic light scattering assay: selective detection of arsenic in groundwater[J]. Angewandte Chemie, 2009, 121(51): 9848-9851.
[10] JENA B K, RAJ C R. Gold nanoelectrode ensembles for the simultaneous electrochemical detection of ultratrace arsenic, mercury, and copper[J]. Analytical Chemistry, 2008, 80: 4836-4844.
[11] MAJID E, HRAPOVIC S, LIU Y L, et al. Electrochemical determination of arsenite using a gold nanoparticle modified glassy carbon electrode and flow analysis[J]. Analytical Chemistry, 2006, 78: 762-769.
[12] EZEH V C, HARROP T C. A sensitive and selective fluorescence sensor for the detection of arsenic(III) in organic media[J]. Inorganic Chemistry, 2012, 51: 1213-1215.
[13] RODAS D S, CORNS W T, CHEN B, et al. Atomic fluorescence spectrometry: a suitable detection technique in speciation studies for arsenic, selenium, antimony and mercury[J]. Journal of Analytical Atomic Spectrometry, 2010, 25: 933-946.
[14] IDOWU A D, DASGUPTA P K. Liquid chromatographic arsenic speciation with gas-phase chemiluminescence detection[J]. Analytical Chemistry, 2007, 79: 9197-9204.
[15] SATIENPERAKUL S, CARDWELL T J, KOLEV S D, et al. A sensitive procedure for the rapid determination of arsenic(Ⅲ) by flow injection analysis and chemiluminescence detection[J]. Analytica Chimica Acta, 2005, 554: 25-30.
[16] ERDOGAN H, YALCINKAYA O, TURKER A R. Determination of inorganic arsenic species by hydride generation atomic absorption spectrometry in water samples after preconcentration/separation on nano ZrO2/B2O3 by solid phase extraction[J]. Desalination, 2011, 280: 391-396.
[17] RIVAS R E, GARCIA I L, CORDOBA M H. Speciation of very low amounts of arsenic and antimony in waters using dispersive liquid–liquid microextraction and electrothermal atomic absorption spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2009, 64: 329-333.
[18] LI X, JIA J, WANG Z H. Speciation of inorganic arsenic by electrochemical hydride generation atomic absorption spectrometry[J]. Analytica Chimica Acta, 2006, 560: 153-158.
[19] CREED P A, SCHWEGEL C A, CREED J T. Investigation of arsenic speciation on drinking water treatment media utilizing automated sequential continuous ow extraction with IC-ICP-MS detection[J]. Journal of Environmental Monitoring, 2005, 7: 1079-1084.
[20] PIZARRO I, GOMEZ M, CAMARA C, et al. Evaluation of arsenic species-protein binding in cardiovascular tissues by bidimensional chromatography with ICP-MS detection[J]. Journal of Analytical Atomic Spectrometry, 2004, 19: 292-296.
[21] ARBAB-ZAVAR M H, CHAMSAZ M, HEIDARI T. Speciation and analysis of arsenic(III) and arsenic(V) by electrochemical hydride generation spectrophotometric method[J]. Analytical Science, 2010, 26: 107-110.
[22] ARBAB-ZAVAR M H, HASHEMI M. Evaluation of electrochemical hydride generation for spectrophotometric determination of As(Ⅲ) by silver diethyldithiocarbamate[J]. Talanta, 2000, 52: 1007-1014.
[23] HOSSAIN M D. Arsenic speciation in environmental samples by hydride generation and electrothermal atomic absorption spectrometry[J]. Talanta, 2012, 88: 30-42.
[24] AKSUNER N, TIRTOM V N, HENDEN E. Arsenic and antimony determination in rened and unrened table salts by means of hydride generation atomic absorption spectrometry-comparison of sample decomposition and determination methods[J]. Turkish Journal of Chemistry, 2011, 35: 871-880.
[25] LUO G B. Determination of total arsenic in wastewater and sewage sludge samples by using hydride-generation atomic fluorescence spectrometry under the optimized analytical conditions[J]. Analytical Letters, 2012, 45: 2493-2507.
[26] FAOUZIA E H, ANGEL M R, MIGUEL D L G. Determination of total arsenic in sofe drinks by hydride generation atomic fluoresence spectrometry[J]. Food Chem, 2007, 105: 1195-1200.
[27] SENGUPTA M K, DASGUPTA P K. Oxidation state-differentiated measurement of aqueous inorganic arsenic by continuous flow electrochemical arsine generation coupled to gas-phase chemiluminescence detection[J]. Analytical Chemistry, 2011, 83: 9378-9383.
[28] XUE J H, ZHU Z L, ZHANG S C, et al. A simple and fast detection technique for arsenic speciation based on high-efficiency photooxidation and gas-phase chemiluminescence detection[J]. Luminescence, 2009, 24: 290-294.
[29] JIANG C N, CHEN C Q, LU Z J, et al. A nanogold resonance rayleigh scattering method for determination of trace as based on the hydride nanoreaction[J]. Luminescence, 2015, 30: 847-852.
[30] MASSON P, PRUNET T, ORIGNAC D. Arsenic determination in plant samples by hydride generation and axial view inductively coupled plasma atomic emission spectrometry[J]. Microchim Acta, 2006, 154: 229-234.
[31] ALBUQUERQUE F I, DUYCK C B, FONSEC T C, et al. Determination of As and Se in crude oil diluted in xylene by inductively coupled plasma mass spectrometry using a dynamic reaction cell for interference correction on 80Se[J]. Spectrochimica Acta Part B, 2012, 71: 112-116.
[1] 李平, 宋少飞, 周福林, 杨坤. 表面活性剂与金属离子协助荧光增敏法测定痕量苯甲酸[J]. 广西师范大学学报(自然科学版), 2015, 33(3): 104-110.
[2] 梁爱惠, 杨铎, 林陈银, 温桂清. 一个简便灵敏测定空气中臭氧的罗丹明6G荧光法[J]. 广西师范大学学报(自然科学版), 2013, 31(4): 98-102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发