Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (4): 200-207.doi: 10.16088/j.issn.1001-6600.2022101901

Previous Articles     Next Articles

Plant-Frugivore Network in Guilin Botanical Garden

SUN Tao1,2, HUANG Yang1,2, TANG Qiming3, WANG Guohai4*, ZHOU Qihai1,2*   

  1. 1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    2. Guangxi Key Laboratory of Rare and Endangered Animal Ecology (Guangxi Normal University), Guilin Guangxi 541006, China;
    3. Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain (Guangxi Institute of Botany, Chinese Academy of Sciences), Guilin Guangxi 541006, China;
    4. College of Chemistry and Bioengineering, Guangxi Normal University for Nationalities, Chongzuo Guangxi 532200, China
  • Received:2022-10-19 Revised:2022-12-28 Online:2023-07-25 Published:2023-09-06

Abstract: Transect and focal animal scanning method were used to collect the birds’ feeding behavior on fruit plants in Guilin Botanical. The information of the interaction relationship between them were analyze to discuss the utilization rule of birds on fruit plants and the seasonal changes of network parameters. 2 174 interactions events were recorded between 14 bird species (2 orders and 7 families) and 13 plant species (8 orders and 11 families) throughout the year. Each plant species interacted with 7.15±0.88 birds, and each bird species interacted with 6.57±1.20 plant species. The interaction connectance (C=0.51), weighted nestedness (0.93) and interaction diversity (H2=3.81) of the network were higher, while the specialization (H2=0.10) was lower. Cayratia japonica and Cinnamomum camphora were the most consumed by birds, while Pycnonotus xanthorrhus, Hemixos castanonotus and Ixos mcclellandii are the bird species that consumed most of the fruit plants, including the 13 plant species. The feeding frequency of birds in autumn (38.79%) and winter (33.15%) accounts for the largest proportion of the total annual feeding frequency. The weighted nestedness (ωNODF=0.92) and interaction diversity (H2=4.78) between birds and fruit plants is the largest in autumn, the largest connectance (C=0.53) in winter, and the largest specialization (H2=0.27) in summer. The results shows that the interaction relationship between animals and plants in urban green space can be complex and variable according to different seasons. The network analysis can provide important information for studying the changes of ecosystem function state in rapidly changing habitats.

Key words: interaction network, frugivorous bird, fruit plant, seasonality

CLC Number:  Q948.122.5
[1] BREGMAN T P, SEKERCIOGLU C H, TOBIAS J A. Global patterns and predictors of bird species responses to forest fragmentation: implications for ecosystem function and conservation[J]. Biological Conservation, 2014, 169: 372-383. DOI: 10.1016/j.biocon.20113.11.024.
[2] MARTIN A E, DESROCHERS A, FAHRIG L. Homogenization of dispersal ability across bird species in response to landscape change[J]. Oikos, 2017, 126(7): 996-1003. DOI: 10.1111/oik.03859.
[3] 何海燕, 王楠, 董路. 北京城市鸟类对食源植物利用规律[J]. 动物学杂志, 2021, 56(4): 491-499. DOI: 10.13859/j.cjz.202104002.
[4] GU H, GOODALE E, CHEN J. Does the role that frugivorous bird species play in seed dispersal networks influence the speed of evolutionary divergence?[J]. Global Ecology and Conservation, 2015, 3: 121-128. DOI: 10.1016/j.gecco.2014.11.012.
[5] OLIVEIRA W L, MEDEIROS M B, SIMON M F, et al. The role of recruitment and dispersal limitation in tree community assembly in Amazonian forests[J]. Plant Ecology & Diversity, 2018, 11(1): 1-12. DOI: 10.1080/17550874.2018.1474960.
[6] PETERS V E, CARLO T A, MELLO M A R, et al. Using plant-animal interactions to inform tree selection in tree-based agroecosystems for enhanced biodiversity[J]. BioScience, 2016, 66(12): 1046-1056. DOI: 10.1093/biosci/biw140.
[7] DELMAS E, BESSON M, BRICE M H, et al. Analysing ecological networks of species interactions[J]. Biological Reviews of the Cambridge Philosophical Sociely, 2019, 94(1): 16-36. DOI: 10.1111/brv.12433.
[8] CRUZ J C, RAMOS J A, SILVA L P, et al. Seed dispersal networks in an urban novel ecosystem[J]. European Journal of Forest Research, 2013, 132(5): 887-897. DOI: 10.1007/s10342-013-0722-1.
[9] ZIETSMAN M Y, MONTALDO N H, DEVOTO M. Plant-frugivore interactions in an urban nature reserve and its nearby gardens[J]. Journal of Urban Ecology, 2019, 5(1): juz021. DOI: 10.1093/jue/juz021.
[10] RODEWALD A D, ROHR R P, FORTUNA M A, et al. Community-level demographic consequences of urbanization: an ecological network approach[J]. Journal of Animal Ecology, 2014, 83(6): 1409-1417. DOI: 10.1111/1365-2656.12224.
[11] MUBAMBA S, NDUNA N, SIACHOONO S, et al. Plant-frugivore networks are robust to species loss even in highly built-up urban ecosystems[J]. Oecologia, 2022, 199(3): 637-648. DOI: 10.1007/s00442-022-05213-9.
[12] CORRAL A, VALÉRIO L M, CHEUNG K C, et al. Plant-bird mutualistic interactions can contribute to the regeneration of forest and non-forest urban patches in the Brazilian Cerrado[J]. Urban Ecosystems, 2021, 24(1): 205-213. DOI: 10.1007/s11252-020-01029-8.
[13] ZHANG M Y, LU C H, HAN Q, et al. Structure and characteristics of plant-frugivore network in an urban park: a case study in Nanjing Botanical Garden Mem. Sun Yat-Sen[J]. Diversity, 2022, 14(2): 71. DOI: 10.3390/d14020071.
[14] DEHLING D M, JORDANO P, SCHAEFER H M, et al. Morphology predicts species’ functional roles and their degree of specialization in plant-frugivore interactions[J]. Proceedings of the Royal Society B: Biological Sciences, 2016, 283(1823): 20152444. DOI: 10.1098/rspb.2015.2444.
[15] GONZALEZ O, LOISELLE B A. Species interactions in an Andean bird-flowering plant network: phenology is more important than abundance or morphology[J]. PeerJ, 2016, 4: e2789. DOI: 10.7717/peerj.2789.
[16] MONTOYA-ARANGO S, ACEVEDO-QUINTERO J F, PARRA J L. Abundance and size of birds determine the position of the species in plant-frugivore interaction networks in fragmented forests[J]. Community Ecology, 2019,20(1): 75-82. DOI: 10.1556/168.2019.20.1.8.
[17] DÁTTILO W, LARA-RODRÍGUEZ N, JORDANO P, et al. Unravelling Darwin's entangled bank: architecture and robustness of mutualistic networks with multiple interaction types[J]. Proceedings of The Royal Society B: Biological Sciences, 2016, 283(1843): 20161564. DOI: 10.1098/rspb.2016.1564.
[18] HERNÁNDEZ-DÁVILA O A, ABORDE J, SOSA V J, et al. Interaction network between frugivorous birds and zoochorous plants in cloud forest riparian strips immersed in anthropic landscapes[J]. Avian Research, 2022, 13: 100046. DOI: 10.1016/j.avrs.2022.100046.
[19] LI W D, ZHU C, GRASS I, et al. Plant-frugivore network simplification under habitat fragmentation leaves a small core of interacting generalists[J]. Communications Biology, 2022, 5(1): 1214. DOI: 10.1038/s42003-022-04198-8.
[20] GARCÍA D, DONOSO I, RODRÍGUEZ-PÉREZ J. Frugivore biodiversity and complementarity in interaction networks enhance landscape-scale seed dispersal function[J]. Functional Ecology, 2018, 32(12): 2742-2752. DOI: 10.1111/1365-2435.13213.
[21] COSTA A, HELENO R, DUFRENE Y, et al. Seasonal variation in impact of non-native species on tropical seed dispersal networks[J]. Functional Ecology, 2022, 36(11): 2713-2726. DOI: 10.1111/1365-2435.14171.
[22] 卢清彪, 朱晓珍, 刘长秋, 等. 狭叶坡垒传粉生物学初探[J]. 广西植物, 2020, 40(11): 1628-1637. DOI: 10.11931/guihaia.gxzw201903030.
[23] YAN P B, YANG J. Species diversity of urban forests in China[J]. Urban Forestry & Urban Greening, 2017, 28: 160-166. DOI: 10.1016/j.ufug.2017.09.005.
[24] YANG S, ALBERT R, CARLO T A. Transience and constancy of interactions in a plant-frugivore network[J]. Ecosphere, 2013, 4(12): 1-25. DOI: 10.1890/ES13-00222.1.
[25] RAMOS-ROBLES M, ANDRESEN E, DÍAZ-CASTELAZO C. Temporal changes in the structure of a plant-frugivore network are influenced by bird migration and fruit availability[J]. PeerJ, 2016, 4: e2048. DOI: 10.7717/peerj.2048.
[26] SCHNEIBERG I, BOSCOLO D, DEVOTO M, et al. Urbanization homogenizes the interactions of plant-frugivore bird networks[J]. Urban Ecosystems, 2020, 23(3): 457-470. DOI: 10.1007/s11252-020-00927-1.
[27] SEBASTIÁN-GONZÁLEZ E, DALSGAARD B, SANDEL B, et al. Macroecological trends in nestedness and modularity of seed-dispersal networks: human impact matters[J]. Global Ecology and Biogeography, 2015, 24(3): 293-303. DOI: 10.1111/geb.12270.
[28] DA SILVA F R, MONTOYA D, FURTADO R, et al. The restoration of tropical seed dispersal networks[J]. Restoration Ecology, 2015, 23(6): 852-860. DOI: 10.1111/rec.12244.
[1] WANG Guohai, LI Fuyan, TU Wenxin, HUANG Qiuchan, TANG Chuangbin, ZHOU Qihai. Fruits Foraging and Dispersal of Bischofia javanica by Frugivorous Birds [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(6): 230-236.
[2] WU Chao, ZHONG Yi-wen. Protein Function Prediction Using Ant Colony Optimization Algorithm [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(3): 136-141.
[3] TANG Nan, YANG Zhi-hao, WU Jia-jin, WANG Yan-hua, LIN Hong-fei. Method of Predicting Protein Complex Based on Supervised Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 174-179.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XU Jiu-cheng, LI Xiao-yan, LI Shuang-qun, ZHANG Ling-jun. Feature Images Retrieval Method of Tolerance Granular-basedMulti-level Texture[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 186 -187 .
[2] BAI Defa, XU Xin, WANG Guochang. Review of Generalized Linear Models and Classification for Functional Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 15 -29 .
[3] ZENG Qingfan, QIN Yongsong, LI Yufang. Empirical Likelihood Inference for a Class of Spatial Panel Data Models[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 30 -42 .
[4] ZHANG Xilong, HAN Meng, CHEN Zhiqiang, WU Hongxin, LI Muhang. Survey of Ensemble Classification Methods for Complex Data Stream[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 1 -21 .
[5] TONG Lingchen, LI Qiang, YUE Pengpeng. Research Progress and Prospects of Karst Soil Organic Carbon Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 22 -34 .
[6] WANG Dangshu, YI Jiaan, DONG Zhen, YANG Yaqiang, DENG Xuan. Research on Bridgeless Boost PFC Converter with Ripple Suppression Unit Based on Single Cycle Control[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 47 -57 .
[7] YU Siting, PENG Jingjing, PENG Zhenyun. Rank Constraint Least Square Symmetric Semidefinite Solutions and Its Optimal Approximation of the Matrix Equation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 136 -144 .
[8] QIN Chengfu, MO Fenmei. Structure ofC3-and C4-Critical Graphs[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 145 -153 .
[9] YIN Yudong, KE Shanzhe, HUANG Jiayan, DENG Mengxiang, LIU Guanyan, CHENG Keguang. One-pot Generation of Allylated Products from Alcohols, Carboxylic Acids and Amines with 1,3-Dibromopropane by Sodium Hydride[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 154 -161 .
[10] DU Libo, LI Jinyu, ZHANG Xiao, LI Yonghong, PAN Weidong. Chemical Constituents and Biological Activity from the Bark of Toona ciliata var. pubescens[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 162 -172 .