Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (5): 158-166.doi: 10.16088/j.issn.1001-6600.2024091102
• Mathematics and Statistics • Previous Articles Next Articles
LI Yang, XIAO Yuru, CHEN Guiling*
| [1] 罗颜涛, 张龙, 滕志东. 一类间歇时滞扩散的概周期捕食系统的持久性[J]. 广西师范大学学报(自然科学版), 2017, 35(2): 50-57. DOI: 10.16088/j.issn.1001-6600.2017. 02.008. [2] 鲍志超, 牛江川, 申永军, 等. 一类含分数阶微积分时滞微分方程的解的指数估计[J]. 石家庄铁道大学学报(自然科学版), 2020, 33(1): 68-73. DOI: 10.13319/j.cnki. sjztddxxbzrb.20180901001. [3] 张嘉祥, 袁海龙, 樊雨. 具有时滞的Holling-Ⅲ型捕食系统的Hopf分支[J/OL]. 山西大学学报(自然科学版): 1-15(2024-04-26)[2024-09-11].https://link.cnki.net/doi/10.13451/j.sxu.ns.2024011. [4] 曹铃苓, 杨宏春, 高雅纯, 等. 具有活跃节点的多层网络作用下时滞SEQS模型分析[J]. 电子科技大学学报, 2024, 53(2): 277-283. DOI:10.12178/1001-0548.2023062. [5] BURTON T A. Stability by fixed point theory for functional differential equations[M].New York: Dover Publications, 2006. [6] GARCÍA G. Existence of bounded solutions for second order neutral difference equations via measure of noncompactness[J]. Electronic Journal of Qualitative Theory of Differential Equations, 2017(73): 1-10. DOI: 10.14232/ejqtde.2017.1.73. [7] BENHADRI M. Stability results for neutral differential equations byKrasnoselskii fixed point theorem[J]. Differential Equations and Dynamical Systems, 2021, 29(1): 3-19.. DOI: 10.1007/s12591-019-00489-5. [8] ARDJOUNI A, DJOUDI A. Fixed points and stability in nonlinear neutral differential equations with variable delays[J]. Nonlinear Studies. The International Journal, 2012, 19 : 345-357. [9] NOWAK G, SAKER S H, SIKORSKA-NOWAK A. Asymptotic stability of nonlinear neutral delay integro-differential equations[J]. Mathematica Slovaca, 2023, 73(1): 103-118. DOI: 10.1515/ms-2023-0011. [10] LIU X Z, RAMIREZ C. Stability analysis by contraction principle for impulsive systems with infinite delays[J]. Communications in Nonlinear Science and Numerical Simulation, 2020, 82: 105021. DOI: 10.1016/j.cnsns.2019.105021. [11] HRISTOVA S, TUNC C. Stability of nonlinear Volterra integro-differential equations with Caputo fractional derivative and bounded delays[J]. Electronic Journal of Differential Equations, 2019, 2019(30): 1-11. [12] LU F X. Exponential stable behavior of a class of impulsive partial stochasticdifferential equations driven by Lévy noise[J]. Taiwanese Journal of Mathematics, 2021, 25(6): 1261-1303. DOI: 10.11650/tjm/210601. [13] 孙文超, 苏有慧, 孙爱. 一类非线性分数阶积分微分方程解的存在性与模拟仿真[J]. 吉林大学学报(理学版), 2021, 59(4): 828-836. DOI: 10.13413/j.cnki.jdxblxb.2020399. [14] BENHADRI M, CARABALLO T. New sufficient conditions for global asymptotic stability of a kind of nonlinear neutral differential equations[J]. Mathematica Bohemica, 2022, 147(3): 385-405. DOI: 10.21136/mb.2021.0079-20. [15] LADJIMI M, GUEZANE LAKOUD A. Stability of solutions of fractional neutral Levin-Nohel integro-differential equations[J]. Mathematical Methods in the Applied Sciences, 2024, 47(4): 2623-2638. DOI: 10.1002/mma.9768. [16] 王春生, 李永明. Krasnoselskii不动点与中立型多变时滞随机动力系统的指数p稳定性[J]. 应用力学学报, 2019, 36(4): 901-905, 1000. DOI: 10.11776/cjam.36.04.D035. [17] 黄明辉, 刘君. 一类具有多变时滞的非线性微分系统的周期解与稳定性[J]. 应用数学学报, 2022, 45(2):294-306. DOI:10.1007/s40590-016-0155-1. [18] 华东师范大学数学系. 数学分析[M]. 2版. 北京: 高等教育出版社, 1990. |
| [1] | LUO Xi, XU Yongqiang. Existence of Positive Solutions for Boundary Value Problems of Fractional Differential Equations with Parameters [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 177-185. |
| [2] | YAN Sha. Global Existence of Solutions for a Three Species Predator-prey Model with Cross-diffusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 125-131. |
| [3] | ZUO Jiabin, YUN Yongzhen. Anti-periodic Boundary Value Problem for a Class of Fractional Differential Equations [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 56-64. |
| [4] | ZHU Yaping, QU Guorong, FAN Jianghua. The Existence of Solutions for Quasi-variational Inequalities by Using the Fixed Point Index Approach [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 79-85. |
| [5] | ZHANG Lisheng, ZHANG Zhiyong, MA Kaihua, LI Guofang. Studying Oscillations in Convection Cahn-Hilliard System with Improved Lattice Boltzmann Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 15-26. |
| [6] | MIAO Xinyan, ZHANG Long, LUO Yantao, PAN Lijun. Study on a Class of Alternative Competition-Cooperation Hybrid Population Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 25-31. |
| [7] | TANG Guoji. Solvability for Generalized Mixed Variational Inequalities with Perturbation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 76-83. |
| [8] | ZHANG Mei-yue. Some New Results for the Electron Beams Focusing System Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 38-44. |
| [9] | HAO Ping-ping, FENG Chun-hua. Dynamics of a Nicholson's Model with a Nonlinear Density-dependent Mortality Term [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(2): 42-47. |
|