Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (6): 177-185.doi: 10.16088/j.issn.1001-6600.2023112205

Previous Articles     Next Articles

Existence of Positive Solutions for Boundary Value Problems of Fractional Differential Equations with Parameters

LUO Xi, XU Yongqiang*   

  1. School of Mathematics and Statistics, Minnan Normal University, Zhangzhou Fujian 363000, China
  • Received:2023-11-22 Revised:2024-01-11 Online:2024-12-30 Published:2024-12-30

Abstract: A class of parametric boundary value problems with two-term fractional derivatives and non-zero boundary values is investigated in this paper. Firstly, Green’s function is constructed by Laplace transform, and the boundary value problem is transformed into the equivalent second kind of Fredholm integral equation. Secondly, by using the properties of Green’s function, Guo-Krasnoselskii fixed point theorem and Leggett-Williams fixed point theorem, sufficient conditions for the existence, nonexistence and multiplicity of positive solutions for boundary value problems of fractional differential equations are obtained. Thirdly, the existence of positive solutions for boundary value problems of usual fractional differential equations is extended to boundary value problems with two fractional derivatives. Finally, an example is given to illustrate the feasibility of the obtained results.

Key words: two-term fractional derivatives, boundary value problem, Guo-Krasnoselskii fixed point theorem, Leggett-Williams fixed point theorem, existence of positive solutions

CLC Number:  O175.25
[1] ELSAYED E M, HARIKRISHNAN S, KANAGARAJAN K. On the existence and stability of boundary value problem for differential equation with Hilfer-Katugampola fractional derivative[J]. Acta Mathematica Scientia, 2019,39(6): 1568-1578. DOI: 10.1007/s10473-019-0608-5.
[2] 黄燕萍, 韦煜明. 一类分数阶微分方程多点边值问题的多解性[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 41-49. DOI: 10.16088/j.issn.1001-6600.2018.03.006.
[3] 周文学, 吴亚斌, 宋学瑶. 带p-Laplacian算子的分数阶微分方程边值问题正解的存在性与多重性[J]. 应用数学, 2023, 36(4): 997-1006. DOI: 10.13642/j.cnki.42-1184/o1.2023.04.020.
[4] ZHANG S Q. Positive solutions for boundary value problems of nonlinear fractional differential equations[J]. Electronic Journal of Differential Equations, 2006, 36: 1-12.
[5] 徐紫钰, 吴克晴. Caputo型分数阶微分系统正解的唯一性[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 92-104. DOI: 10.16088/j.issn.1001-6600.2023032202.
[6] CABADA A, WANG G T. Positive solutions of nonlinear fractional differential equations with integral boundary value conditions[J]. Journal of Mathematical Analysis and Applications, 2012, 389(1): 403-411. DOI: 10.1016/j.jmaa.2011.11.065.
[7] WAMG Y Q. The Green’s function of a class of two-term fractional differential equation boundary value problem and its applications[J]. Advances in Difference Equations, 2020,2020(1): 80. DOI: 10.1186/s13662-020-02549-5.
[8] 庞 杨, 韦煜明, 冯春华.一类分数阶微分方程两点边值问题正解的存在性[J]. 广西师范大学学报(自然科学版), 2017, 35 (4): 68-75. DOI: 10.16088/j.issn.1001-6600.2017.04.010.
[9] BAI Z B. On positive solutions of a nonlinear fractional boundary value problem[J]. Nonlinear Analysis: Theory, Methods & APPlications, 2010, 72(2): 916-924.DOI: 10.1016/j.na.2009.07.033.
[10] YOU J, XU M R, SUN S R. Existence of boundary value problems for impulsive fractional differential equations with a parameter[J]. Communications on Applied Mathematics and Computation, 2021, 3(4): 585-604. DOI: 10.1007/s42967-021-00145-2.
[11] 冯海星, 翟成波. 一类含参数分数阶微分方程边值问题正解的性质研究[J]. 应用数学和力学, 2017, 38(7): 818-826. DOI: 10.21656/1000-0887.380124.
[12] CHEN Y. Existence and uniqueness of positive solutions for boundary of a fractional differential equation with a parameter[J]. Hacettepe Journal of Mathematics and Statistics, 2015,44(3): 659-667. DOI: 10.15672/HJMS. 20154510032.
[13] 邵宏宇, 王文霞. 一类含有参数的分数阶微分方程边值问题的单调算子方法[J]. 理论数学, 2021, 11(1): 7-15. DOI: 10.12677/PM.2021.111002.
[14] YANG C, GUO Y R, ZHAI C B. An integral boundary value problem of fractional differential equations with a sign-changed parameter in Banach spaces[J]. Complexity, 2021, 2021: 9567931. DOI: 10.1155/2021/9567931.
[15] HAO X N, ZHANG L Y, LIU L S. Positive solutions of higher order fractional integral boundary value problem with a parameter[J]. Nonlinear Analysis: Modelling and Control, 2019,24(2): 210-223. DOI: 10.15388/NA.2019.2.4.
[16] BAI Z B, ZHANG Y H. Solvability of fractional three-point boundary value problems with nonlinear growth[J]. Applied Mathematics and Computation, 2011, 218(5): 1719-1725. DOI: 10.1016/j.amc.2011.06.051.
[17] 王学彬. 拉普拉斯变换方法解分数阶微分方程[J]. 西南师范大学学报(自然科学版), 2016, 41(7): 7-12. DOI: 10.13718/j.cnki.xsxb.2016.07.00
[18] 董伟萍, 周宗福. 一类分数阶微分方程多点边值问题正解的存在性(英文)[J]. 应用数学, 2022, 35(1): 43-52. DOI: 10.13642/j.cnki.42-1184/o1.2022.01.003.
[1] ZUO Jiabin, YUN Yongzhen. Anti-periodic Boundary Value Problem for a Class of Fractional Differential Equations [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 56-64.
[2] HUANG Yanping, WEI Yuming. Multiple Solutions of Multiple-points Boundary Value Problem for a Class of Fractional Differential Equation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 41-49.
[3] YAN Rongjun, WEI Yuming, FENG Chunhua. Existence of Three Positive Solutions for Fractional Differential Equation ofBoundary Value Problem with p-Laplacian Operator and Delay [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 75-82.
[4] WEI Yu-ming, WANG Yong, TANG Yan-qiu, FAN Jiang-hua. Existence and Uniqueness of Solutions for Delay Boundary Value Problems with p-Laplacian on Infinite Intervals [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(2): 48-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHU Gege, HUANG Anshu, QIN Yingying. Analysis of Development Trend of International Mangrove Research Based on Web of Science[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 1 -12 .
[2] HE Jing, FENG Yuanliu, SHAO Jingwen. Research Progress on Multi-source Data Fusion Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 13 -27 .
[3] WANG Shuying, LU Yuxiang, DONG Shutong, CHEN Mo, KANG Bingya, JIANG Zhanglan, SU Chengyuan. Research Progress on the Propagation Process and Control Technology of ARGs in Wastewater[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 1 -15 .
[4] ZHONG Qiao, CHEN Shenglong, TANG Congcong. Hydrogel Technology for Microalgae Collection: Status Overview, Challenges and Development Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 16 -29 .
[5] ZHAI Siqi, CAI Wenjun, ZHU Su, LI Hanlong, SONG Hailiang, YANG Xiaoli, YANG Yuli. Dynamic Relationship Between Reverse Solute Flux and Membrane Fouling in Forward Osmosis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 30 -39 .
[6] ZHENG Guoquan, QIN Yongli, WANG Chenxiang, GE Shijia, WEN Qianmin, JIANG Yongrong. Stepwise Precipitation of Heavy Metals from Acid Mine Drainage and Mineral Formation in Sulfate-Reducing Anaerobic Baffled Reactor System[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 40 -52 .
[7] LIU Yang, ZHANG Yijie, ZHANG Yan, LI Ling, KONG Xiangming, LI Hong. Current Status and Trends of Algal Coagulation Elimination Technology in Drinking Water Treatment: a Visual Analysis Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 53 -66 .
[8] TIAN Sheng, CHEN Dong. A Joint Eco-driving Optimization Research for Connected Fuel Cell Hybrid Vehicle via Deep Reinforcement Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 67 -80 .
[9] CHEN Xiufeng, WANG Chengxin, ZHAO Fengyang, YANG Kai, GU Kexin. A Single Intersection Signal Control Method Based on Improved DQN Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 81 -88 .
[10] LI Xin, NING Jing. Online Assessment of Transient Stability in Power Systems Based on Spatiotemporal Feature Fusion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 89 -100 .