Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (5): 158-166.doi: 10.16088/j.issn.1001-6600.2024091102

• Mathematics and Statistics • Previous Articles     Next Articles

Boundedness and Attractiveness of a Class of Nonlinear Neutral Delay Differential Equations

LI Yang, XIAO Yuru, CHEN Guiling*   

  1. School of Mathematics, Southwest Jiaotong University, Chengdu Sichuan 610031, China
  • Received:2024-09-11 Revised:2024-11-15 Online:2025-09-05 Published:2025-08-05

Abstract: The boundedness and attractiveness of a class of nonlinear neutral delay differential equations are studied by employing Krasnoselskii's fixed point theorem. By introducing auxiliary functions and using an integral factor, the differential equation is transformed into an integral equation. Then, the Krasnoselskii's fixed point theorem is used to discuss the boundedness and attractiveness of the transformed equation. Finally, the properties of auxiliary functions are used to discuss the boundedness and attractiveness of the original equation. The results obtained in this paper improve the corresponding results in the existing literatures, and an example is provided to illustrate the effectiveness of the obtained results.

Key words: Krasnoselskii's fixed point theorem, existence, boundedness, attractiveness

CLC Number:  O175
[1] 罗颜涛, 张龙, 滕志东. 一类间歇时滞扩散的概周期捕食系统的持久性[J]. 广西师范大学学报(自然科学版), 2017, 35(2): 50-57. DOI: 10.16088/j.issn.1001-6600.2017. 02.008.
[2] 鲍志超, 牛江川, 申永军, 等. 一类含分数阶微积分时滞微分方程的解的指数估计[J]. 石家庄铁道大学学报(自然科学版), 2020, 33(1): 68-73. DOI: 10.13319/j.cnki. sjztddxxbzrb.20180901001.
[3] 张嘉祥, 袁海龙, 樊雨. 具有时滞的Holling-Ⅲ型捕食系统的Hopf分支[J/OL]. 山西大学学报(自然科学版): 1-15(2024-04-26)[2024-09-11].https://link.cnki.net/doi/10.13451/j.sxu.ns.2024011.
[4] 曹铃苓, 杨宏春, 高雅纯, 等. 具有活跃节点的多层网络作用下时滞SEQS模型分析[J]. 电子科技大学学报, 2024, 53(2): 277-283. DOI:10.12178/1001-0548.2023062.
[5] BURTON T A. Stability by fixed point theory for functional differential equations[M].New York: Dover Publications, 2006.
[6] GARCÍA G. Existence of bounded solutions for second order neutral difference equations via measure of noncompactness[J]. Electronic Journal of Qualitative Theory of Differential Equations, 2017(73): 1-10. DOI: 10.14232/ejqtde.2017.1.73.
[7] BENHADRI M. Stability results for neutral differential equations byKrasnoselskii fixed point theorem[J]. Differential Equations and Dynamical Systems, 2021, 29(1): 3-19.. DOI: 10.1007/s12591-019-00489-5.
[8] ARDJOUNI A, DJOUDI A. Fixed points and stability in nonlinear neutral differential equations with variable delays[J]. Nonlinear Studies. The International Journal, 2012, 19 : 345-357.
[9] NOWAK G, SAKER S H, SIKORSKA-NOWAK A. Asymptotic stability of nonlinear neutral delay integro-differential equations[J]. Mathematica Slovaca, 2023, 73(1): 103-118. DOI: 10.1515/ms-2023-0011.
[10] LIU X Z, RAMIREZ C. Stability analysis by contraction principle for impulsive systems with infinite delays[J]. Communications in Nonlinear Science and Numerical Simulation, 2020, 82: 105021. DOI: 10.1016/j.cnsns.2019.105021.
[11] HRISTOVA S, TUNC C. Stability of nonlinear Volterra integro-differential equations with Caputo fractional derivative and bounded delays[J]. Electronic Journal of Differential Equations, 2019, 2019(30): 1-11.
[12] LU F X. Exponential stable behavior of a class of impulsive partial stochasticdifferential equations driven by Lévy noise[J]. Taiwanese Journal of Mathematics, 2021, 25(6): 1261-1303. DOI: 10.11650/tjm/210601.
[13] 孙文超, 苏有慧, 孙爱. 一类非线性分数阶积分微分方程解的存在性与模拟仿真[J]. 吉林大学学报(理学版), 2021, 59(4): 828-836. DOI: 10.13413/j.cnki.jdxblxb.2020399.
[14] BENHADRI M, CARABALLO T. New sufficient conditions for global asymptotic stability of a kind of nonlinear neutral differential equations[J]. Mathematica Bohemica, 2022, 147(3): 385-405. DOI: 10.21136/mb.2021.0079-20.
[15] LADJIMI M, GUEZANE LAKOUD A. Stability of solutions of fractional neutral Levin-Nohel integro-differential equations[J]. Mathematical Methods in the Applied Sciences, 2024, 47(4): 2623-2638. DOI: 10.1002/mma.9768.
[16] 王春生, 李永明. Krasnoselskii不动点与中立型多变时滞随机动力系统的指数p稳定性[J]. 应用力学学报, 2019, 36(4): 901-905, 1000. DOI: 10.11776/cjam.36.04.D035.
[17] 黄明辉, 刘君. 一类具有多变时滞的非线性微分系统的周期解与稳定性[J]. 应用数学学报, 2022, 45(2):294-306. DOI:10.1007/s40590-016-0155-1.
[18] 华东师范大学数学系. 数学分析[M]. 2版. 北京: 高等教育出版社, 1990.
[1] LUO Xi, XU Yongqiang. Existence of Positive Solutions for Boundary Value Problems of Fractional Differential Equations with Parameters [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 177-185.
[2] YAN Sha. Global Existence of Solutions for a Three Species Predator-prey Model with Cross-diffusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 125-131.
[3] ZUO Jiabin, YUN Yongzhen. Anti-periodic Boundary Value Problem for a Class of Fractional Differential Equations [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 56-64.
[4] ZHU Yaping, QU Guorong, FAN Jianghua. The Existence of Solutions for Quasi-variational Inequalities by Using the Fixed Point Index Approach [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 79-85.
[5] ZHANG Lisheng, ZHANG Zhiyong, MA Kaihua, LI Guofang. Studying Oscillations in Convection Cahn-Hilliard System with Improved Lattice Boltzmann Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 15-26.
[6] MIAO Xinyan, ZHANG Long, LUO Yantao, PAN Lijun. Study on a Class of Alternative Competition-Cooperation Hybrid Population Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 25-31.
[7] TANG Guoji. Solvability for Generalized Mixed Variational Inequalities with Perturbation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 76-83.
[8] ZHANG Mei-yue. Some New Results for the Electron Beams Focusing System Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 38-44.
[9] HAO Ping-ping, FENG Chun-hua. Dynamics of a Nicholson's Model with a Nonlinear Density-dependent Mortality Term [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(2): 42-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHONG Qiao, CHEN Shenglong, TANG Congcong. Hydrogel Technology for Microalgae Collection: Status Overview, Challenges and Development Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 16 -29 .
[2] SHI Huilu, MO Yanhua, LUO Haiyu, MA Jiangming. Inhibitory Activity of Ethyl Acetate Extracts of Loropetalum chinense against Pathogens[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(1): 1 -8 .
[3] HE Qing, LI Dong, LUO Siyuan, HE Yudong, LI Biao, WANG Qiang. Research Progress in Ultra-wideband Rydberg Atomic Antenna Technology[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 1 -19 .
[4] HUANG Renhui, ZHANG Ruifeng, WEN Xiaohao, BI Jinjie, HUANG Shoulin, LI Tinghui. Complex-value Covariance-based Convolutional Neural Network for Decoding Motor Imagery-based EEG Signals[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 43 -56 .
[5] TIAN Sheng, XIONG Chenyin, LONG Anyang. Point Cloud Classification Method of Urban Roads Based on Improved PointNet++[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 1 -14 .
[6] LI Zongxiao, ZHANG Jian, LUO Xinyue, ZHAO Yifei, LU Fei. Research on Arrival Trajectory Prediction Based on K-means and Adam-LSTM[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 15 -23 .
[7] SONG Mingkai, ZHU Chengjie. Research on Fault Location of Distribution Network Based on H-WOA-GWO and Region Correction Strategies[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 24 -37 .
[8] HAN Shuo, JIANG Linfeng, YANG Jianbin. Attention-based PINNs Method for Solving Saint-Venant Equations[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 58 -68 .
[9] LI Zhixin, KUANG Wenlan. Fine-grained Image Classification Combining Adaptive Spatial Mutual Attention and Feature Pair Integration Discrimination[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 69 -82 .
[10] SHI Tianyi, NAN Xinyuan, GUO Xiangyu, ZHAO Pu, CAI Xin. Improved ConvNeXt-based Algorithm for Apple Leaf Disease Classification[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 83 -96 .