Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (3): 98-105.doi: 10.16088/j.issn.1001-6600.2024061401

• Mathematics and Statistics • Previous Articles     Next Articles

Singular Cycles Bifurcation Leading to Limit Cycles in 2-Dimensional Piecewise Affine Systems

ZHANG Xiaoqian, WANG Lei*   

  1. Department of Mathematics and Statistics, Hefei University, Hefei Anhui 230601, China
  • Received:2024-06-14 Revised:2024-08-19 Online:2025-05-05 Published:2025-05-14

Abstract: For a class of two-dimensional piecewise affine system with parameters, the existence of singular cycles is obtained by adjusting the structure of the invariant manifolds of subsystems. Then, after selecting a suitable transversal in a small neighborhood of the singular cycles, the composite Poincaré map is constructed to obtain the one-side stability of the singular cycles by the flow map generated by the subsystems, and the existence and stability of the limit cycles induced by the bifurcation of the singular cycles. Finally, two examples are given to illustrate the applications of the main results.

Key words: singular cycles, bifurcation, Poincaré map, stability, piecewise affine system

CLC Number:  O175.1
[1] 王佳伏,徐忠齐,黄立宏.具有不连续控制策略的SIQR传染病模型的全局动力学分析[J].应用数学学报,2023,46(6):998-1011.
[2]黄立宏,王佳伏.右端不连续微分方程模型及其动力学分析[M].北京:科学出版社,2021:151-189.
[3]罗建锋.几类光滑与非光滑生物系统的动力学研究[D].哈尔滨:哈尔滨工业大学,2020. DOI: 10.27061/d.cnki.ghgdu.2020.004950.
[4]曹志豪.具有不连续控制策略的植物病虫害模型的动力学分析[D].长沙:长沙理工大学,2022. DOI: 10.26985/d.cnki.gcsjc.2022.000364.
[5]李葛.几类不连续神经网络模型的动力学研究[D].长沙:湖南大学,2019. DOI: 10.27135/d.cnki.ghudu.2019.004435.
[6]JEFFREY M R. Hidden dynamics: the mathematics of switches, decisions and other discontinuous behaviour[M]. Cham: Springer, 2018. DOI: 10.1007/978-3-030-02107-8.
[7]徐王军,曹进德,伍代勇,等.一类具有迁移和Allee效应的食饵-捕食者系统稳定性[J].广西师范大学学报(自然科学版),2022,40(2):103-115. DOI: 10.16088/j.issn.1001-6600.2021052801.
[8]黄文韬,古结平,王勤龙.三维微分系统的极限环与等时中心[J].广西师范大学学报(自然科学版),2022,40(5):104-126. DOI: 10.16088/j.issn.1001-6600.2022020702.
[9]CHEN H B, TANG Y L. At most two limit cycles in a piecewise linear differential system with three zones and asymmetry[J]. Physica D: Nonlinear Phenomena, 2019, 386/387: 23-30. DOI: 10.1016/j.physd.2018.08.004.
[10]BUZZIC A, MEDRADO J C, TORREGROSA J. Limit cycles in 4-star-symmetric planar piecewise linear systems[J]. Journal of Differential Equations, 2020, 268(5): 2414-2434. DOI: 10.1016/j.jde.2019.09.008.
[11]CARMONA V, FERNÁNDEZ-SÁNCHEZ F. Integral characterization for Poincaré half-maps in planar linear systems[J]. Journal of Differential Equations, 2021, 305: 319-346. DOI: 10.1016/J.JDE.2021.10.010.
[12]LIANG H H, LI S M, ZHANG X. Limit cycles and global dynamics of planar piecewise linear refracting systems of focus-focus type[J]. Nonlinear Analysis: Real World Applications, 2021, 58: 103228. DOI: 10.1016/j.nonrwa.2020.103228.
[13]CARMONA V, FERNÁNDEZ-SÁNCHEZ F, NOVAES D D. Uniqueness and stability of limit cycles in planar piecewise linear differential systems without sliding region[J]. Communications in Nonlinear Science and Numerical Simulation, 2023, 123: 107257. DOI: 10.1016/ J.CNSNS.2023.107257.
[14]SIMPSON D J W. Twenty Hopf-like bifurcations in piecewise-smooth dynamical systems[J]. Physics Reports, 2022, 970: 1-80. DOI: 10.1016/j.physrep.2022.04.007.
[15]ZHANG H H, XIONG Y Q. Hopf bifurcations by perturbing a class of reversible quadratic systems[J]. Chaos Solitons & Fractals, 2023, 170: 113309. DOI: 10.1016/J.CHAOS. 2023. 113309.
[16]LLIBRE J, NOVAES D D, RODRIGUES CA B. Averaging theory at any order for computing limit cycles of discontinuous piecewise differential systems with many zones[J]. Physica D: Nonlinear Phenomena, 2017, 353/354: 1-10. DOI: 10.1016/j.physd.2017.05.003.
[17]WEI L J, ZHANG X. Averaging theory of arbitrary order for piecewise smooth differential systems and its application[J]. Journal of Dynamics and Differential Equations, 2018, 30(1): 55-79. DOI: 10.1007/s10884-016-9534-6.
[18]CHEN X W, LI T, LLIBRE J. Melnikov functions of arbitrary order for piecewise smooth differential systems in Rn and applications[J]. Journal of Differential Equations, 2022, 314: 340-369. DOI: 10.1016/J.JDE.2022.01.019.
[19]WIGGINS S. Introduction to applied nonlinear dynamical systems and chaos[M]. 2nd ed. New York: Springer, 2003. DOI: 10.1007/b97481.
[20]SHILNIKOV L P, SHILNIKOV A L, TURAEV D V, et al. Methods of qualitative theory in nonlinear dynamics (Part II)[M]. New Jersey: World Scientific, 2001. DOI: 10.1142/4221.
[1] LI Xin, NING Jing. Online Assessment of Transient Stability in Power Systems Based on Spatiotemporal Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 89-100.
[2] HUANG Kaijiao, XIAO Feiyan. A Stochastic Predator-prey Model with Beddington-DeAngelis Functional Response and Time Delay [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 141-150.
[3] LI Zhi, ZHAO Wenqiang. Higher-order Stability of Attractors for Stochastic Reaction-Diffusion Equation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 151-158.
[4] TONG Liyan, JIANG Guirong, JIANG Bo, LONG Tengfei. Stability Analysis of a Bipedal Robot Walking up a Slope [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 131-139.
[5] WU Zixian, CHENG Jun, FU Jianling, ZHOU Xinwen, XIE Jialong, NING Quan. Analysis of PI-based Event-Triggered Control Design for Semi-Markovian Power Systems [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 76-85.
[6] CHENG Lei, YAN Puxuan, DU Bohao, YE Si, ZOU Huahong. Thermal Stability and Dielectric Relaxation of MOF-2 Synthesized in Aqueous Phase [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 86-95.
[7] YU Junsheng, MA Zhongjun, LI Kezan. Event-Triggered Control for Partial Component Consensus of Leader-Following Multi-agent Systems [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(4): 149-157.
[8] LING Zhanjun, LI Hongtao, LU Hanglin, FU Gurui, HUANG Tianqi, LÜ Liang, YU Benli. Research on Refractive Index Sensing Based on Micro-nano Fiber Coupler [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(3): 31-40.
[9] CHEN Jiarui, LING Lin, JIANG Guirong. Modeling and Dynamics Analysis of an Ascending Stairs Biped Robot Under Impulse Thrust [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(6): 131-144.
[10] HUANG Wentao, GU Jieping, WANG Qinlong. Limit Cycles and Isochronous Centers of Three-dimensional Differential Systems [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 104-126.
[11] SHAO Huiting, YANG Qigui. Complex Dynamics of a Six-dimensional Hyperchaotic System with Four Positive Lyapunov Exponents [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 433-444.
[12] XU Wangjun, CAO Jinde, WU Daiyong, SHEN Chuansheng. Stability of a Prey-predator Model with Migration and Allee Effects [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 103-115.
[13] ZHANG Wanjing, LIN Zhigui. Turing Instability of a Parasite-host Model on Growing Domains [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 132-139.
[14] RUAN Wenjing, YANG Qigui. Research on Complex Dynamics of a New Four-dimensional Hyperchaotic System with Finite and Infinite Isolated Singularities [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 173-181.
[15] LI Songtao, LI Qunhong, ZHANG Wen. Co-dimension-two Grazing Bifurcation and Chaos Control of Three-degree-of-freedom Vibro-impact Systems [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 79-92.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!