Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (3): 31-40.doi: 10.16088/j.issn.1001-6600.2022061006
Previous Articles Next Articles
LING Zhanjun1, LI Hongtao1,2,3,4*, LU Hanglin4, FU Gurui1, HUANG Tianqi1,2,3, LÜ Liang1,2,3, YU Benli1,2,3
[1] MODI A, KORATKAR N, LASS E, et al. Miniaturized gas ionization sensors using carbon nanotubes[J]. ChemInform, 2003, 34(40): 389-406. DOI: 10.1002/chin.200340238. [2] KIM J, CAMPBELL A S, DE ÁVILA B E F, et al. Wearable biosensors for healthcare monitoring[J]. Nature Biotechnology, 2019, 37(4): 389-406. DOI: 10.1038/s41587-019-0045-y. [3] XU H, XIA A Y, WANG D D, et al. An ultraportable and versatile point-of-care DNA testing platform[J]. Science Advances, 2020, 6(17): eaaz7445. DOI: 10.1126/sciadv.aaz7445. [4] 张晓,胡放荣,张隆辉,等.基于三谐振吸收峰的超材料太赫兹传感器[J].桂林电子科技大学学报,2023,43(2):157-164. DOI: 10.16725/j.cnki.cn45-1351/tn.2023.02.001. [5] 祁雁英,钟志贤,蔡忠侯,等.基于差分误差补偿的磁轴承转子位移测量方法[J].桂林理工大学学报,2022,42(2):491-495. [6] QIAN Y, ZHAO Y, WU Q L, et al. Review of salinity measurement technology based on optical fiber sensor[J]. Sensors and Actuators B: Chemical, 2018, 260: 86-105. DOI: 10.1016/j.snb.2017.12.077. [7] JANIK M, HAMIDI S V, KOBA M, et al. Real-time isothermal DNA amplification monitoring in picoliter volumes using an optical fiber sensor[J]. Lab on a Chip, 2021, 21(2): 397-404. DOI: 10.1039/d0lc01069c. [8] ZHAO Y, HU X G, HU S, et al. Applications of fiber-optic biochemical sensor in microfluidic chips: a review[J]. Biosensors and Bioelectronics, 2020, 166: 112447. DOI: 10.1016/j.bios.2020.112447. [9] LI H T, HUANG Y Y, CHEN C Y, et al. Real-time cellular cytochrome C monitoring through an optical microfiber: enabled by a silver-decorated graphene nanointerface[J]. Advanced Science, 2018, 5(8): 1701074. DOI: 10.1002/advs.201701074. [10] XU Y C, XIONG M, YAN H. A portable optical fiber biosensor for the detection of zearalenone based on the localized surface plasmon resonance[J]. Sensors and Actuators B: Chemical, 2021, 336: 129752. DOI: 10.1016/j.snb.2021.129752. [11] LIANG L L, JIN L, RAN Y, et al. Fiber light-coupled optofluidic waveguide (FLOW) immunosensor for highly sensitive detection of p53 protein[J]. Analytical Chemistry, 2018, 90(18): 10851-10857. DOI: 10.1021/acs.analchem.8b02123. [12] 赵明富,矫雷子,董大明,等.线性锥形光纤倏逝波传感器的灵敏度分析[J].压电与声光,2012,34(1):23-26. DOI: 10.3969/j.issn.1004-2474.2012.01.008. [13] JUSTE-DOLZ A, DELGADO-PINAR M, AVELLA-OLIVER M, et al. BIO bragg gratings on microfibers for label-free biosensing[J]. Biosensors and Bioelectronics, 2021, 176: 112916. DOI: 10.1016/j.bios.2020.112916. [14] LI Y P, FANG F, YANG L Y, et al. In-situ DNA hybridization detection based on a reflective microfiber probe[J]. Optics Express, 2020, 28(2): 970-979. DOI: 10.1364/OE.380896. [15] WU J X, ZHANG X, LIU B, et al. Square-microfiber-integrated biosensor for label-free DNA hybridization detection[J]. Sensors and Actuators B: Chemical, 2017, 252: 1125-1131. DOI: 10.1016/j.snb.2017.07.168. [16] SUN L P, HUANG Y, HUANG T S, et al. Optical microfiber reader for Enzyme-linked immunosorbent assay[J]. Analytical Chemistry, 2019, 91(21): 14141-14148. DOI: 10.1021/acs.analchem.9b04119. [17] JIA H, ZHANG A, YANG Y Q, et al. A graphene oxide coated tapered microfiber acting as a super-sensor for rapid detection of SARS-CoV-2[J]. Lab on a Chip, 2021, 21(12): 2398-2406. DOI: 10.1039/d0lc01231a. [18] LI H T, HUANG Y Y, HOU G H, et al. Single-molecule detection of biomarker and localized cellular photothermal therapy using an optical microfiber with nanointerface[J]. Science Advances, 2019, 5(12): eaax4659. DOI: 10.1126/sciadv.aax4659. [19] LU H L, LIU R J, LIU P Y, et al. Au-NPs signal amplification ultra-sensitivity optical microfiber interferometric biosensor[J]. Optics Express, 2021, 29(9): 13937-13948. DOI: 10.1364/OE.424878. [20] XIAO A X, HUANG Y Y, ZHENG J Y, et al. An optical microfiber biosensor for CEACAM5 detection in serum: sensitization by a nanosphere interface[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 1799-1805. DOI: 10.1021/acsami.9b16702. [21] SUN D D, XU S M, LIU S, et al. Simultaneous measurement of temperature and relative humidity based on a twisted microfiber coated with nanomaterials[J]. Applied Optics, 2021, 60(13): 3849-3855. DOI: 10.1364/AO.423341. [22] LI K W, ZHANG N, ZHANG N M Y, et al. Ultrasensitive measurement of gas refractive index using an optical nanofiber coupler[J]. Optics Letters, 2018, 43(4): 679-682. DOI: 10.1364/OL.43.000679. [23] LI K W, ZHANG N M Y, ZHANG N, et al. Spectral characteristics and ultrahigh sensitivities near the dispersion turning point of optical microfiber couplers[J]. Journal of Lightwave Technology, 2018, 36(12): 2409-2415. DOI: 10.1109/JLT.2018.2815558. [24] ZHOU W C, LI K W, WEI Y L, et al. Ultrasensitive label-free optical microfiber coupler biosensor for detection of cardiac troponin I based on interference turning point effect[J]. Biosensors & Bioelectronics, 2018, 106: 99-104. DOI: 10.1016/j.bios.2018.01.061. [25] WEI F F, LIU D J, WANG Z, et al. Enhancing the visibility of Vernier effect in a tri-microfiber coupler fiber loop interferometer for ultrasensitive refractive index and temperature sensing[J]. Journal of Lightwave Technology, 2021, 39(5): 1523-1529. DOI: 10.1109/JLT.2020.3035655. [26] JIANG Y X, YI Y T, BRAMBILLA G, et al. High-sensitivity, fast-response ethanol gas optical sensor based on a dual microfiber coupler structure with the Vernier effect[J]. Optics Letters, 2021, 46(7): 1558-1561. DOI: 10.1364/OL.418953. [27] LI K W, ZHANG N, ZHANG N M Y, et al. Birefringence induced Vernier effect in optical fiber modal interferometers for enhanced sensing[J]. Sensors and Actuators B: Chemical, 2018, 275: 16-24. DOI: 10.1016/j.snb.2018.08.027. [28] JIANG Y X, YI Y T, BRAMBILLA G, et al. Ultra-high-sensitivity refractive index sensor based on dual-microfiber coupler structure with the Vernier effect[J]. Optics Letters, 2020, 45(5): 1268-1271. DOI: 10.1364/OL.385345. [29] 周玮.基于级联长周期光栅的高灵敏度传感器的设计与应用研究[D].武汉:华中科技大学,2020. DOI: 10.27157/d.cnki.ghzku.2020.005522 [30] 张俊傲,李国民,周远国,等.基于黑磷的多共振折射率传感器研究[J].空军工程大学学报(自然科学版),2022,23(1):43-48.DOI: 10.3969/j.issn.1009-3516.2022.01.006. [31] 付兴虎,黄书铭,李东姝,等.基于粗锥结构级联LPFG的双包层光纤多参量传感器[J].光子学报,2021,50(1):75-85. DOI: 10.3788/gzxb20215001.0106001. [32] 伍铁生,杨祖宁,张慧仙,等.D型高双折射光子晶体光纤的折射率传感特性研究[J].光子学报,2022,51(3):0306003. DOI: 10.3788/gzxb20225103.0306003. [33] 陈海林,江超,郭小珊,等.同时测量温度与折射率的细芯锥形光纤传感器[J].电子器件,2022,45(1):112-116. DOI: 10.3969/j.issn.1005-9490.2022.01.019. [34] 杨帆,曹晔,李美琪,等.基于S锥结构光纤传感器的研究[J].青岛大学学报(工程技术版),2022,37(2):1-6. DOI: 10.13306/j.1006-9798.2022.02.001. [35] 朱永钦.基于螺旋锥的马赫-曾德尔干涉仪光纤传感器研究[D].长春:吉林大学,2020. DOI: 10.27162/d.cnki.gjlin.2020.005793. [36] YARIV A, YEH P. Photonics: optical electronics in modern communications[M]. New York: Oxford University Press, 2007. [37] YANG S W, WU T L, WU C W, et al. Numerical modeling of weakly fused fiber-optic polarization beamsplitters. Part II: the three-dimensional electromagnetic model[J]. Journal of Lightwave Technology, 1998, 16(4): 691-696. DOI: 10.1109/50.664084. [38] LI J, SUN L P, GAO S, et al. Ultrasensitive refractive-index sensors based on rectangular silica microfibers[J]. Optics Letters, 2011, 36(18): 3593-3595. DOI: 10.1364/OL.36.003593. [39] 郝晋青,韩丙辰.基于游标效应的高灵敏度光纤耦合器折射率传感器[J].光学学报,2020,40(2):0206002. DOI: 10.3788/AOS202040.0206002. [40] 蔡志远.光子晶体光纤局域表面等离子体共振传感器的研究[D].秦皇岛:燕山大学,2021. DOI: 10.27440/d.cnki.gysdu.2021.001398. [41] 韩磊.表面等离子体共振传感器增敏机理及优化设计研究[D].武汉:中国地质大学,2021. DOI: 10.27492/d.cnki.gzdzu.2021.000042. |
No related articles found! |
|