Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (3): 31-40.doi: 10.16088/j.issn.1001-6600.2022061006

Previous Articles     Next Articles

Research on Refractive Index Sensing Based on Micro-nano Fiber Coupler

LING Zhanjun1, LI Hongtao1,2,3,4*, LU Hanglin4, FU Gurui1, HUANG Tianqi1,2,3, LÜ Liang1,2,3, YU Benli1,2,3   

  1. 1. School of Physics and Optoelectronics Engineering, Anhui University, Hefei Anhui 230601, China;
    2. Information Materials and Intelligent Sensing Laboratory of Anhui Province(Anhui University), Hefei Anhui 230601, China;
    3. Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education(Anhui University), Hefei Anhui 230601, China;
    4. Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology(Guangxi Normal University), Guilin Guangxi 541004, China
  • Received:2022-06-10 Revised:2022-07-21 Online:2023-05-25 Published:2023-06-01

Abstract: Although some conventional high-sensitivity optical microfiber couplers with ultra-thin diameter have been reported, the reported optical microfiber couplers with very fragile properties can pose great challenges in real sensing applications. In order to address the above problem, an optical microfiber coupler with a broad diameter of 6.25 μm was studied experimentally and theoretically. This optical microfiber coupler can achieve a high refractive-index sensitivity of-1 753 nm/RIU at the external refractive index (RI) of 1.339 8 with good stability. Based on finite element method (FEM), and effective indices of even/odd modes and refractive index sensitivity can be calculated. By this way, the proposed optical microfiber coupler can find proper applications in fiber-optic micro-fluidic biosensor and lab-on-a-chip multifunctional sensing.

Key words: optical fibers, coupler, refractive index sensitivity, finite element method, good stability

CLC Number:  TN253
[1] MODI A, KORATKAR N, LASS E, et al. Miniaturized gas ionization sensors using carbon nanotubes[J]. ChemInform, 2003, 34(40): 389-406. DOI: 10.1002/chin.200340238.
[2] KIM J, CAMPBELL A S, DE ÁVILA B E F, et al. Wearable biosensors for healthcare monitoring[J]. Nature Biotechnology, 2019, 37(4): 389-406. DOI: 10.1038/s41587-019-0045-y.
[3] XU H, XIA A Y, WANG D D, et al. An ultraportable and versatile point-of-care DNA testing platform[J]. Science Advances, 2020, 6(17): eaaz7445. DOI: 10.1126/sciadv.aaz7445.
[4] 张晓,胡放荣,张隆辉,等.基于三谐振吸收峰的超材料太赫兹传感器[J].桂林电子科技大学学报,2023,43(2):157-164. DOI: 10.16725/j.cnki.cn45-1351/tn.2023.02.001.
[5] 祁雁英,钟志贤,蔡忠侯,等.基于差分误差补偿的磁轴承转子位移测量方法[J].桂林理工大学学报,2022,42(2):491-495.
[6] QIAN Y, ZHAO Y, WU Q L, et al. Review of salinity measurement technology based on optical fiber sensor[J]. Sensors and Actuators B: Chemical, 2018, 260: 86-105. DOI: 10.1016/j.snb.2017.12.077.
[7] JANIK M, HAMIDI S V, KOBA M, et al. Real-time isothermal DNA amplification monitoring in picoliter volumes using an optical fiber sensor[J]. Lab on a Chip, 2021, 21(2): 397-404. DOI: 10.1039/d0lc01069c.
[8] ZHAO Y, HU X G, HU S, et al. Applications of fiber-optic biochemical sensor in microfluidic chips: a review[J]. Biosensors and Bioelectronics, 2020, 166: 112447. DOI: 10.1016/j.bios.2020.112447.
[9] LI H T, HUANG Y Y, CHEN C Y, et al. Real-time cellular cytochrome C monitoring through an optical microfiber: enabled by a silver-decorated graphene nanointerface[J]. Advanced Science, 2018, 5(8): 1701074. DOI: 10.1002/advs.201701074.
[10] XU Y C, XIONG M, YAN H. A portable optical fiber biosensor for the detection of zearalenone based on the localized surface plasmon resonance[J]. Sensors and Actuators B: Chemical, 2021, 336: 129752. DOI: 10.1016/j.snb.2021.129752.
[11] LIANG L L, JIN L, RAN Y, et al. Fiber light-coupled optofluidic waveguide (FLOW) immunosensor for highly sensitive detection of p53 protein[J]. Analytical Chemistry, 2018, 90(18): 10851-10857. DOI: 10.1021/acs.analchem.8b02123.
[12] 赵明富,矫雷子,董大明,等.线性锥形光纤倏逝波传感器的灵敏度分析[J].压电与声光,2012,34(1):23-26. DOI: 10.3969/j.issn.1004-2474.2012.01.008.
[13] JUSTE-DOLZ A, DELGADO-PINAR M, AVELLA-OLIVER M, et al. BIO bragg gratings on microfibers for label-free biosensing[J]. Biosensors and Bioelectronics, 2021, 176: 112916. DOI: 10.1016/j.bios.2020.112916.
[14] LI Y P, FANG F, YANG L Y, et al. In-situ DNA hybridization detection based on a reflective microfiber probe[J]. Optics Express, 2020, 28(2): 970-979. DOI: 10.1364/OE.380896.
[15] WU J X, ZHANG X, LIU B, et al. Square-microfiber-integrated biosensor for label-free DNA hybridization detection[J]. Sensors and Actuators B: Chemical, 2017, 252: 1125-1131. DOI: 10.1016/j.snb.2017.07.168.
[16] SUN L P, HUANG Y, HUANG T S, et al. Optical microfiber reader for Enzyme-linked immunosorbent assay[J]. Analytical Chemistry, 2019, 91(21): 14141-14148. DOI: 10.1021/acs.analchem.9b04119.
[17] JIA H, ZHANG A, YANG Y Q, et al. A graphene oxide coated tapered microfiber acting as a super-sensor for rapid detection of SARS-CoV-2[J]. Lab on a Chip, 2021, 21(12): 2398-2406. DOI: 10.1039/d0lc01231a.
[18] LI H T, HUANG Y Y, HOU G H, et al. Single-molecule detection of biomarker and localized cellular photothermal therapy using an optical microfiber with nanointerface[J]. Science Advances, 2019, 5(12): eaax4659. DOI: 10.1126/sciadv.aax4659.
[19] LU H L, LIU R J, LIU P Y, et al. Au-NPs signal amplification ultra-sensitivity optical microfiber interferometric biosensor[J]. Optics Express, 2021, 29(9): 13937-13948. DOI: 10.1364/OE.424878.
[20] XIAO A X, HUANG Y Y, ZHENG J Y, et al. An optical microfiber biosensor for CEACAM5 detection in serum: sensitization by a nanosphere interface[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 1799-1805. DOI: 10.1021/acsami.9b16702.
[21] SUN D D, XU S M, LIU S, et al. Simultaneous measurement of temperature and relative humidity based on a twisted microfiber coated with nanomaterials[J]. Applied Optics, 2021, 60(13): 3849-3855. DOI: 10.1364/AO.423341.
[22] LI K W, ZHANG N, ZHANG N M Y, et al. Ultrasensitive measurement of gas refractive index using an optical nanofiber coupler[J]. Optics Letters, 2018, 43(4): 679-682. DOI: 10.1364/OL.43.000679.
[23] LI K W, ZHANG N M Y, ZHANG N, et al. Spectral characteristics and ultrahigh sensitivities near the dispersion turning point of optical microfiber couplers[J]. Journal of Lightwave Technology, 2018, 36(12): 2409-2415. DOI: 10.1109/JLT.2018.2815558.
[24] ZHOU W C, LI K W, WEI Y L, et al. Ultrasensitive label-free optical microfiber coupler biosensor for detection of cardiac troponin I based on interference turning point effect[J]. Biosensors & Bioelectronics, 2018, 106: 99-104. DOI: 10.1016/j.bios.2018.01.061.
[25] WEI F F, LIU D J, WANG Z, et al. Enhancing the visibility of Vernier effect in a tri-microfiber coupler fiber loop interferometer for ultrasensitive refractive index and temperature sensing[J]. Journal of Lightwave Technology, 2021, 39(5): 1523-1529. DOI: 10.1109/JLT.2020.3035655.
[26] JIANG Y X, YI Y T, BRAMBILLA G, et al. High-sensitivity, fast-response ethanol gas optical sensor based on a dual microfiber coupler structure with the Vernier effect[J]. Optics Letters, 2021, 46(7): 1558-1561. DOI: 10.1364/OL.418953.
[27] LI K W, ZHANG N, ZHANG N M Y, et al. Birefringence induced Vernier effect in optical fiber modal interferometers for enhanced sensing[J]. Sensors and Actuators B: Chemical, 2018, 275: 16-24. DOI: 10.1016/j.snb.2018.08.027.
[28] JIANG Y X, YI Y T, BRAMBILLA G, et al. Ultra-high-sensitivity refractive index sensor based on dual-microfiber coupler structure with the Vernier effect[J]. Optics Letters, 2020, 45(5): 1268-1271. DOI: 10.1364/OL.385345.
[29] 周玮.基于级联长周期光栅的高灵敏度传感器的设计与应用研究[D].武汉:华中科技大学,2020. DOI: 10.27157/d.cnki.ghzku.2020.005522
[30] 张俊傲,李国民,周远国,等.基于黑磷的多共振折射率传感器研究[J].空军工程大学学报(自然科学版),2022,23(1):43-48.DOI: 10.3969/j.issn.1009-3516.2022.01.006.
[31] 付兴虎,黄书铭,李东姝,等.基于粗锥结构级联LPFG的双包层光纤多参量传感器[J].光子学报,2021,50(1):75-85. DOI: 10.3788/gzxb20215001.0106001.
[32] 伍铁生,杨祖宁,张慧仙,等.D型高双折射光子晶体光纤的折射率传感特性研究[J].光子学报,2022,51(3):0306003. DOI: 10.3788/gzxb20225103.0306003.
[33] 陈海林,江超,郭小珊,等.同时测量温度与折射率的细芯锥形光纤传感器[J].电子器件,2022,45(1):112-116. DOI: 10.3969/j.issn.1005-9490.2022.01.019.
[34] 杨帆,曹晔,李美琪,等.基于S锥结构光纤传感器的研究[J].青岛大学学报(工程技术版),2022,37(2):1-6. DOI: 10.13306/j.1006-9798.2022.02.001.
[35] 朱永钦.基于螺旋锥的马赫-曾德尔干涉仪光纤传感器研究[D].长春:吉林大学,2020. DOI: 10.27162/d.cnki.gjlin.2020.005793.
[36] YARIV A, YEH P. Photonics: optical electronics in modern communications[M]. New York: Oxford University Press, 2007.
[37] YANG S W, WU T L, WU C W, et al. Numerical modeling of weakly fused fiber-optic polarization beamsplitters. Part II: the three-dimensional electromagnetic model[J]. Journal of Lightwave Technology, 1998, 16(4): 691-696. DOI: 10.1109/50.664084.
[38] LI J, SUN L P, GAO S, et al. Ultrasensitive refractive-index sensors based on rectangular silica microfibers[J]. Optics Letters, 2011, 36(18): 3593-3595. DOI: 10.1364/OL.36.003593.
[39] 郝晋青,韩丙辰.基于游标效应的高灵敏度光纤耦合器折射率传感器[J].光学学报,2020,40(2):0206002. DOI: 10.3788/AOS202040.0206002.
[40] 蔡志远.光子晶体光纤局域表面等离子体共振传感器的研究[D].秦皇岛:燕山大学,2021. DOI: 10.27440/d.cnki.gysdu.2021.001398.
[41] 韩磊.表面等离子体共振传感器增敏机理及优化设计研究[D].武汉:中国地质大学,2021. DOI: 10.27492/d.cnki.gzdzu.2021.000042.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HU Wenjun. Delay Consensus of Leader-following Multi-agent Systems via the Adaptive Distributed Control[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 70 -75 .
[2] BIN Shiyu, LIAO Fang, DU Xuesong, XU Yilan, WANG Xin, WU Xia, LIN Yong. Research Progress on Cold Tolerance of Tilapia[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(1): 10 -16 .
[3] CHENG Rui, HE Mingxian, ZHONG Chunying, LUO Shuyi, WU Zhengjun. Comparison of Swimming Ability between Wild and Captive Breeding Shinisaurus crocodilurus[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(1): 79 -86 .
[4] LUO Shuyi, LI Yongtai, WU Zhengjun, CHENG Rui, CHEN Yaohuan, HE Jiasong. Influencing Factors of Perch Height of Shinisaurus crocodilurus in Daguishan Mountain, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 182 -189 .
[5] JIANG Xianghui, TAN Rong, YANG Yongping, XIAO Qingzong. Analysis of Network Pharmacology and Confirmation of Mahonia fortunei (Lindl. ) Fedde and Glycyrrhiza uralensis Fisch Decoction for Hepatitis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 198 -209 .
[6] TIAN Sheng, GAN Zhiheng, LÜ Qing. Remaining Driving Range Prediction Based on Symbol Conversion and XGBoost Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 27 -36 .
[7] LIU Zhenyu, SONG Shuxiang, CEN Mingcan, JIANG Pinqun, CAI Chaobo. Modeling and Design of Low Power and High Precision Sigma-Delta Modulator[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 58 -70 .
[8] WANG Dangshu, YI Jiaan, DONG Zhen, YANG Yaqiang, DENG Xuan. Research on Bridgeless Boost PFC Converter with Ripple Suppression Unit Based on Single Cycle Control[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 47 -57 .
[9] YU Siting, PENG Jingjing, PENG Zhenyun. Rank Constraint Least Square Symmetric Semidefinite Solutions and Its Optimal Approximation of the Matrix Equation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 136 -144 .
[10] HE Qing, LIU Jian, WEI Lianfu. Single-Photon Detectors as the Physical Limit Detections of Weak Electromagnetic Signals[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 1 -23 .