Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (3): 141-150.doi: 10.16088/j.issn.1001-6600.2023060701

Previous Articles     Next Articles

A Stochastic Predator-prey Model with Beddington-DeAngelis Functional Response and Time Delay

HUANG Kaijiao1,2, XIAO Feiyan1*   

  1. 1. School of Mathematics and Statistics, Guangxi Normal University, Guilin Guangxi 541006, China;
    2. School of Mathematics and Physics, Guangxi Minzu University, Nanning Guangxi 530006, China
  • Received:2023-06-07 Revised:2023-08-11 Published:2024-05-31

Abstract: In this paper, a stochastic delayed predator-prey model with Beddington-DeAngelis functional response is studied. Sufficient criteria for global existence, stochastically ultimately bounded and global asymptotic stability of the positive equilibrium are obtained. Numerical simulations are carried out to illustrate the analytical results.

Key words: predator-prey model, Beddington-DeAngelis functional response, stochastically ultimately bounded, global asymptotic stability

CLC Number:  O175
[1] VOLTERRA V. Fluctuations in the abundance of a species considered mathematically[J]. Nature, 1926, 118(2972): 558-560.
[2] BEDDINGTON J R. Mutual interference between parasites or predators and its effect on searching efficiency[J]. Journal of Animal Ecology, 1975, 44(1): 331-340.
[3] DEANGELIS D L, GOLDSTEIN R A, O'NEILL R V. A model for tropic interaction[J]. Ecology, 1975, 56(4): 881-892.
[4] 陈滨,王明新. 带有扩散和Beddington-DeAngelis响应函数的捕食模型的正平衡态[J]. 数学年刊A辑, 2007,28A(4): 495-506.
[5] 李波, 梁子维. 一类具有Beddington-DeAngelis响应函数的阶段结构捕食模型的稳定性[J]. 数学物理学报, 2022, 42(6): 1826-1835.
[6] 段明霞,马纪英.具有Beddington-DeAngelis型功能反应的离散捕食者-食饵系统的动力学行为[J]. 应用数学进展, 2023, 12(4): 1824-1837.
[7] LIU M, WANG K. Global stability of a nonlinear stochastic predator-prey system with Beddington-DeAngelis functional response[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(16): 1114-1121.
[8] 黄开娇, 肖飞雁. 具有Beddington-DeAngelis型功能性反应的随机捕食-被捕食系统[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 32-40.
[9] SHAO Y, KONG W. A predator-prey model with Beddington-DeAngelis functional response and multiple delays in deterministic and stochastic environments[J]. Mathematics. 2022, 10(18): 3378.
[10] PENG M, LIN R, CHEN Y, et al. Qualitative analysis in a Beddington-DeAngelis type predator-prey model with two time delays[J]. Symmetry, 2022, 14(12): 2535.
[11] XU S H, LÜ W D, LI X F. Existence of global solutions for a prey-predator model with Beddington-DeAngelis functional response and cross-diffusion[J]. Mathematica Applicata, 2009, 22(4): 821-827.
[12] LIU S Q, ZHANG J H. Coexistence and stability of predator-prey model with Beddington-DeAngelis functional response and stage structure[J]. Journal of Mathematical Analysis and Applications, 2008, 342(1): 446-460.
[13] MAO X R. Stability of stochastic differential equations with Markovian switching[J]. Stochastic Processes and Their Applications, 1999, 79(1): 45-67.
[14] MAO X R. Stochastic differential equations and their applications[M]. Chichester: Ellis Horwood, 1997.
[15] HIGHAM D J. An algorithmic introduction to numerical simulation of stochastic differential equations[J]. SIAM Review, 2001, 43(3): 525-546.
[1] ZHENG Tao, ZHOU Xinran, ZHANG Long. Global Asymptotic Stability of Predator-Competition-Cooperative Hybrid Population Models of Three Species [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 64-70.
[2] MIAO Xinyan, ZHANG Long, LUO Yantao, PAN Lijun. Study on a Class of Alternative Competition-Cooperation Hybrid Population Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 25-31.
[3] HUANG Kaijiao, XIAO Feiyan. A Stochastic Predator-prey System with Beddington-DeAngelis Functional Response [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 32-40.
[4] HUANG Kaijiao, XIAO Feiyan. A Stochastic Predator-prey System with Lévy Jumps [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(2): 66-72.
[5] HAN Cai-hong, LI Lue, HUANG Rong-li. Dynamics of the Difference Equation xn+1=pn+xnxn-1 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(1): 44-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!