Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (3): 131-140.doi: 10.16088/j.issn.1001-6600.2023082902
Previous Articles Next Articles
ZHAO Xiaomei, DING Yong*, WANG Haitao
[1] RUAN N J, WANG H, WEN F Q, et al. DOA estimation in B5G/6G: trends and challenges[J]. Sensors, 2022, 22(14): 5125-5125. DOI: 10.3390/s22145125. [2] 张小飞, 汪飞, 陈伟华. 阵列信号处理的理论与应用[M]. 2版. 北京: 国防工业出版社, 2013: 1-7. [3] 王永良, 陈辉, 彭应宁, 等. 空间谱估计理论与算法[M]. 北京: 清华大学出版社, 2004: 1-20. [4] STOICA P, SHARMAN K C. Maximum likelihood methods for direction-of-arrival estimation[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1990, 38(7): 1132-1143. DOI: 10.1109/29.57542. [5] 恽小华, 王莉, 恽才华, 等. 基于最大似然算法的空间谱估计测向性能分析[J]. 电子学报, 1996,24(12): 70-72. [6] WONG K T, ZOLTOWSKI M D. Root-MUSIC-based azimuth-elevation angle-of-arrival estimation with uniformly spaced but arbitrarily oriented velocity hydrophones[J]. IEEE Transactions on Signal Processing, 1999, 47(12): 3250-3260. DOI: 10.1109/78.806070. [7] ROY R, KAILATH T. ESPRIT: estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(7): 984-995. DOI: 10.1109/29.32276. [8] FAN X N, PANG L B, SHI P F, et al. Application of bee evolutionary genetic algorithm to maximum likelihood direction-of-arrival estimation[J]. Mathematical Problems in Engineering, 2019, 2019: 6035870. DOI: 10.1155/2019/6035870. [9] LI M, LU Y. Genetic algorithm based maximum likelihood DOA estimation[C]// RADAR 2002. London: IEE, 2002: 502-506. DOI: 10.1109/RADAR.2002.1174766. [10] BOCCATO L, KRUMMENAUER R, ATTUX R, et al. Application of natural computing algorithms to maximum likelihood estimation of direction of arrival[J]. Signal Processing, 2012, 92(5): 1338-1352. DOI: 10.1016/j.sigpro.2011.12.004. [11] 冯舒, 张志成, 石要武. 引入蝙蝠算法的最大似然DOA估计[J]. 现代电子技术, 2016, 39(8): 26-29. DOI: 10.16652/j.issn.1004-373x.2016.08.007. [12] SHARMA A, MATHUR S. Comparative analysis of ML-PSO DOA estimation with conventional techniques in varied multipath channel environment[J]. Wireless Personal Communications, 2018, 100(3): 803-817. DOI: 10.1007/s11277-018-5350-0. [13] 李俊武, 俞志富. 改进粒子群算法在DOA估计中的应用[J]. 计算机工程与应用, 2013, 49(9): 203-206. DOI: 10.3778/j.issn.1002-8331.1110-0002. [14] 王鹏, 何伟嘉, 贺雪芳, 等. 基于SOA的矢量水听器阵列极大似然DOA估计[J]. 数学的实践与认识, 2022, 52(2): 110-116. [15] ZHAO W G, WANG L Y, ZHANG Z X. Atom search optimization and its application to solve a hydrogeologic parameter estimation problem[J]. Knowledge-Based Systems, 2019, 163: 283-304. DOI: 10.1016/j.knosys.2018.08.030. [16] WANG P, HE W J, GUO F, et al. An improved atomic search algorithm for optimization and application in ML DOA estimation of vector hydrophone array[J]. AIMS Mathematics, 2022, 7(4): 5563-5593. DOI: 10.3934/math.2022308. [17] 王鹏, 贺雪芳, 张明星, 等. 基于人工鱼群算法的声矢量传感器阵列的最大似然DOA估计[J]. 太原理工大学学报, 2020, 51(6): 845-851. DOI: 10.16355/j.cnki.issn1007-9432tyut.2020.06.010. [18] 张义元, 张志成, 石要武, 等. 基于布谷鸟搜索算法的最大似然DOA估计[J]. 吉林大学学报(信息科学版), 2015, 33(3): 235-240. DOI: 10.3969/j.issn.1671-5896.2015.03.003. [19] WANG G G, DEB S, CUI Z H. Monarch butterfly optimization[J]. Neural Computing & Applications, 2019, 31(7): 1995-2014. DOI: 10.1007/s00521-015-1923-y. [20] TIZHOOSH H R. Opposition-based learning: a new scheme for machine intelligence[C]// International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06). Los Alamitos, CA: IEEE Computer Society, 2005: 695-701. DOI: 10.1109/CIMCA.2005.1631345. [21] 孟宪猛, 蔡翠翠. 基于精英反向学习和Lévy飞行的鲸鱼优化算法[J]. 电子测量技术, 2021, 44(20): 82-87. DOI: 10.19651/j.cnki.emt.2107650. [22] 孙林, 赵婧, 徐久成, 等. 基于改进帝王蝶优化算法的特征选择方法[J]. 模式识别与人工智能, 2020, 33(11): 981-994. DOI: 10.16451/j.cnki.issn1003-6059.202011003. [23] 孙成硕, 戚志东, 叶伟琴, 等. 变异反向学习的自适应帝王蝶优化算法[J]. 计算机工程与应用, 2022, 58(11): 66-72. DOI: 10.3778/j.issn.1002-8331.2107-0042. [24] 周慧, 王进, 顾翔, 等. 高斯-柯西变异算子优化的LSSVM模型研究[J]. 计算机与数字工程, 2020, 48(1): 19-24. DOI: 10.3969/j.issn.1672-9722.2020.01.004. [25] 杜晓昕, 张剑飞, 郭媛, 等. 基于柯西-高斯动态消减变异的果蝇优化算法研究[J]. 计算机工程与科学, 2016, 38(6): 1171-1176. DOI: 10.3969/j.issn.1007-130X.2016.06.016. |
[1] | ZHU Yan, CAI Jing, LONG Fang. Statistical Analysis of Partially Step Stress Accelerated Life Tests for Compound Rayleigh Distribution Competing Failure Model Under Progressive Type-Ι Hybrid Censoring [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 159-169. |
[2] | LONG Fang, CAI Jing, ZHU Yan. Analysis of Reliability in a Multicomponent Stress-Strength Model for Lomax Distribution under Progressive type-Ⅱ Hybrid Censoring [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 120-130. |
[3] | SUN Ye, JIANG Jingjing, WANG Chunjie. Bayesian Estimation of Current Status Data with Generalized Extreme Value Regression Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 82-90. |
[4] | LIANG Xin, CHEN Xiaoling, ZHANG Xingfa, LI Yuan. A Class of Autoregressive Moving Average Model with GARCH Type Errors [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 195-205. |
[5] | LI Lili, ZHANG Xingfa, LI Yuan, DENG Chunliang. Daily GARCH Model Estimation Using High Frequency Data [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 68-78. |
[6] | YANG Xiaowei, ZHANG Junjian. Law of Iterated Logarithm and Strong Consistency for Negative Binomial Regression Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(3): 59-69. |
|