Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (3): 131-140.doi: 10.16088/j.issn.1001-6600.2023082902

Previous Articles     Next Articles

Maximum Likelihood DOA Estimation Based on Improved Monarch Butterfly Algorithm

ZHAO Xiaomei, DING Yong*, WANG Haitao   

  1. School of Information and Communication, Guilin University of Electronic Technology, Guilin Guangxi 541004, China
  • Received:2023-08-29 Revised:2023-10-16 Published:2024-05-31

Abstract: In response to the problems of excessive computational complexity and poor accuracy in traditional maximum likelihood direction of arrival (ML-DOA) estimation, improved monarch butterfly optimization algorithm is proposed and applied to ML-DOA estimation. By using elite reverse learning strategies to optimize the initial monarch butterfly population and obtaining individuals with better fitness values, the diversity of the monarch butterfly population can be improved; In order to improve the individual optimization method, the mutation operation and adaptive strategy inspired by differential evolution are used for expanding the search scope of the algorithm; At the same time, the Gaussian-Cauchy mutation operator is introduced to adjust the mutation step size, preventing the algorithm from trapping in local optima, and apply IMBO to ML-DOA. Experiments show that the proposed algorithm has better convergence performance, lower root-mean-square deviation and less computation under different number of sources, SNR and population, compared with the conventional DOA estimation algorithm.

Key words: direction of arrival, maximum likelihood estimation, butterfly optimization algorithm, elite reverse learning, adaptive strategy, mutation operator

CLC Number:  TN911.7
[1] RUAN N J, WANG H, WEN F Q, et al. DOA estimation in B5G/6G: trends and challenges[J]. Sensors, 2022, 22(14): 5125-5125. DOI: 10.3390/s22145125.
[2] 张小飞, 汪飞, 陈伟华. 阵列信号处理的理论与应用[M]. 2版. 北京: 国防工业出版社, 2013: 1-7.
[3] 王永良, 陈辉, 彭应宁, 等. 空间谱估计理论与算法[M]. 北京: 清华大学出版社, 2004: 1-20.
[4] STOICA P, SHARMAN K C. Maximum likelihood methods for direction-of-arrival estimation[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1990, 38(7): 1132-1143. DOI: 10.1109/29.57542.
[5] 恽小华, 王莉, 恽才华, 等. 基于最大似然算法的空间谱估计测向性能分析[J]. 电子学报, 1996,24(12): 70-72.
[6] WONG K T, ZOLTOWSKI M D. Root-MUSIC-based azimuth-elevation angle-of-arrival estimation with uniformly spaced but arbitrarily oriented velocity hydrophones[J]. IEEE Transactions on Signal Processing, 1999, 47(12): 3250-3260. DOI: 10.1109/78.806070.
[7] ROY R, KAILATH T. ESPRIT: estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(7): 984-995. DOI: 10.1109/29.32276.
[8] FAN X N, PANG L B, SHI P F, et al. Application of bee evolutionary genetic algorithm to maximum likelihood direction-of-arrival estimation[J]. Mathematical Problems in Engineering, 2019, 2019: 6035870. DOI: 10.1155/2019/6035870.
[9] LI M, LU Y. Genetic algorithm based maximum likelihood DOA estimation[C]// RADAR 2002. London: IEE, 2002: 502-506. DOI: 10.1109/RADAR.2002.1174766.
[10] BOCCATO L, KRUMMENAUER R, ATTUX R, et al. Application of natural computing algorithms to maximum likelihood estimation of direction of arrival[J]. Signal Processing, 2012, 92(5): 1338-1352. DOI: 10.1016/j.sigpro.2011.12.004.
[11] 冯舒, 张志成, 石要武. 引入蝙蝠算法的最大似然DOA估计[J]. 现代电子技术, 2016, 39(8): 26-29. DOI: 10.16652/j.issn.1004-373x.2016.08.007.
[12] SHARMA A, MATHUR S. Comparative analysis of ML-PSO DOA estimation with conventional techniques in varied multipath channel environment[J]. Wireless Personal Communications, 2018, 100(3): 803-817. DOI: 10.1007/s11277-018-5350-0.
[13] 李俊武, 俞志富. 改进粒子群算法在DOA估计中的应用[J]. 计算机工程与应用, 2013, 49(9): 203-206. DOI: 10.3778/j.issn.1002-8331.1110-0002.
[14] 王鹏, 何伟嘉, 贺雪芳, 等. 基于SOA的矢量水听器阵列极大似然DOA估计[J]. 数学的实践与认识, 2022, 52(2): 110-116.
[15] ZHAO W G, WANG L Y, ZHANG Z X. Atom search optimization and its application to solve a hydrogeologic parameter estimation problem[J]. Knowledge-Based Systems, 2019, 163: 283-304. DOI: 10.1016/j.knosys.2018.08.030.
[16] WANG P, HE W J, GUO F, et al. An improved atomic search algorithm for optimization and application in ML DOA estimation of vector hydrophone array[J]. AIMS Mathematics, 2022, 7(4): 5563-5593. DOI: 10.3934/math.2022308.
[17] 王鹏, 贺雪芳, 张明星, 等. 基于人工鱼群算法的声矢量传感器阵列的最大似然DOA估计[J]. 太原理工大学学报, 2020, 51(6): 845-851. DOI: 10.16355/j.cnki.issn1007-9432tyut.2020.06.010.
[18] 张义元, 张志成, 石要武, 等. 基于布谷鸟搜索算法的最大似然DOA估计[J]. 吉林大学学报(信息科学版), 2015, 33(3): 235-240. DOI: 10.3969/j.issn.1671-5896.2015.03.003.
[19] WANG G G, DEB S, CUI Z H. Monarch butterfly optimization[J]. Neural Computing & Applications, 2019, 31(7): 1995-2014. DOI: 10.1007/s00521-015-1923-y.
[20] TIZHOOSH H R. Opposition-based learning: a new scheme for machine intelligence[C]// International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06). Los Alamitos, CA: IEEE Computer Society, 2005: 695-701. DOI: 10.1109/CIMCA.2005.1631345.
[21] 孟宪猛, 蔡翠翠. 基于精英反向学习和Lévy飞行的鲸鱼优化算法[J]. 电子测量技术, 2021, 44(20): 82-87. DOI: 10.19651/j.cnki.emt.2107650.
[22] 孙林, 赵婧, 徐久成, 等. 基于改进帝王蝶优化算法的特征选择方法[J]. 模式识别与人工智能, 2020, 33(11): 981-994. DOI: 10.16451/j.cnki.issn1003-6059.202011003.
[23] 孙成硕, 戚志东, 叶伟琴, 等. 变异反向学习的自适应帝王蝶优化算法[J]. 计算机工程与应用, 2022, 58(11): 66-72. DOI: 10.3778/j.issn.1002-8331.2107-0042.
[24] 周慧, 王进, 顾翔, 等. 高斯-柯西变异算子优化的LSSVM模型研究[J]. 计算机与数字工程, 2020, 48(1): 19-24. DOI: 10.3969/j.issn.1672-9722.2020.01.004.
[25] 杜晓昕, 张剑飞, 郭媛, 等. 基于柯西-高斯动态消减变异的果蝇优化算法研究[J]. 计算机工程与科学, 2016, 38(6): 1171-1176. DOI: 10.3969/j.issn.1007-130X.2016.06.016.
[1] ZHU Yan, CAI Jing, LONG Fang. Statistical Analysis of Partially Step Stress Accelerated Life Tests for Compound Rayleigh Distribution Competing Failure Model Under Progressive Type-Ι Hybrid Censoring [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 159-169.
[2] LONG Fang, CAI Jing, ZHU Yan. Analysis of Reliability in a Multicomponent Stress-Strength Model for Lomax Distribution under Progressive type-Ⅱ Hybrid Censoring [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 120-130.
[3] SUN Ye, JIANG Jingjing, WANG Chunjie. Bayesian Estimation of Current Status Data with Generalized Extreme Value Regression Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 82-90.
[4] LIANG Xin, CHEN Xiaoling, ZHANG Xingfa, LI Yuan. A Class of Autoregressive Moving Average Model with GARCH Type Errors [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 195-205.
[5] LI Lili, ZHANG Xingfa, LI Yuan, DENG Chunliang. Daily GARCH Model Estimation Using High Frequency Data [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 68-78.
[6] YANG Xiaowei, ZHANG Junjian. Law of Iterated Logarithm and Strong Consistency for Negative Binomial Regression Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(3): 59-69.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!