Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (2): 120-130.doi: 10.16088/j.issn.1001-6600.2023041902

Previous Articles     Next Articles

Analysis of Reliability in a Multicomponent Stress-Strength Model for Lomax Distribution under Progressive type-Ⅱ Hybrid Censoring

LONG Fang, CAI Jing*, ZHU Yan   

  1. School of Data Science and Information Engineeting, Guizhou Minzu University, Guiyang Guizhou 550000, China
  • Received:2023-04-19 Revised:2023-06-03 Published:2024-04-22

Abstract: Based on progressive type-Ⅱ hybrid samples, the reliability analysis of Lomax distributed multicomponent stress-strength model is studied. Assuming that stress and strength have the same scale parameters and different shape parameters, the maximum likelihood estimation of the reliability function is obtained by using the maximum likelihood theory and the iterative method when the scale parameters are unknown and the asymptotic confidence interval is given. By using Bayesian theory, Tierney Kadane (TK) approximation method and MCMC algorithm, the Bayesian estimation of unknown parameters and reliability under the square error loss function is discussed, and the maximum a posteriori density confidence interval (HPD) is given. Finally, Monte-Carlo simulation method is used to compare and analyze the estimated results. The simulation results show that the Bayesian estimation is better than the maximum likelihood estimation on the whole, and the mean square error (MSE) of the two estimates decreases gradually with the increase of the sample, and the effect of (HPD) confidence interval is better than the asymptotic confidence interval.

Key words: progressive type-Ⅱ hybrid censoring, Lomax distribution, multicomponent stress-strength reliability, maximum likelihood estimation, Bayesian estimation

CLC Number:  O213.2
[1] 马秀平. 基于逆Xgamma分布的应力强度模型可靠度估计[D]. 安庆:安庆师范大学, 2022.
[2] 戴林送, 王枞. 基于广义逆威布尔分布的应力强度模型可靠度估计[J]. 统计与决策, 2020, 36(9): 25-29.
[3] 李珺, 闫在在. 逐次Ⅰ型混合截尾下基于FGM copula的应力强度模型可靠性估计[J]. 数学的实践与认识, 2022, 52(4): 183-195.
[4] 程从华. 基于截尾数据指数Pareto分布应力-强度模型的可靠性[J]. 数学学报(中文版), 2020, 63(3): 193-208.
[5] BHATTACHARYYA G K,JOHNSON R A. Estimation of the reliability in a multicomponent stress-strength model[J]. Journal of the American Statistical Association,1974,69(348):966-97.
[6] AKGÜL F G. Classical and Bayesian estimation of multicomponent stress-strength reliability for exponentiated Pareto distribution[J]. Soft Computing, 2021, 25(14): 9185-9197.
[7] FATIH K. Classical and Bayesian estimation of reliability in a multicomponent stress-strength model based on a general class of inverse exponentiated distributions[J]. Statistical Papers, 2018, 59(3): 1161-1192.
[8] JANA N, BERA S. Interval estimation of multicomponent stress strength reliability based on inverse Weibull distribution[J]. Mathematics and Computers in Simulation, 2022, 191: 95-119.
[9] WANG L, WU K, TRIPATHI Y M, et al. Reliability analysis of multicomponent stress-strength reliability from a bathtub-shaped distribution[J]. Journal of Applied Statistics, 2020, 49(1): 122-142.
[10] DEY S, MAZUCHELI J, ANIS M Z. Estimation of reliability of multicomponent stress-strength for a Kumaraswamy distribution[J]. Communications in Statistics Theory and Methods, 2017, 46(4): 1560-1572.
[11] AKGÜL F G. Reliability estimation in multicomponent stress-strength model for Topp-Leone distribution[J]. Journal of Statistical Computation and Simulation, 2019, 89(15): 2914-2929.
[12] RAO G S, BHATTI F A, ASLAM M, et al. Estimation of reliability in a multicomponent stress-strength system for the exponentiated moment-based exponential distribution[J]. Algorithms, 2019, 12(12), 246.
[13] NADAR M, ERÇELIK E. Reliability of multicomponent stress-strength model based on bivariate generalized exponential distribution[J]. American Journal of Mathematical and Management Sciences, 2023, 42(1): 86-103.
[14] SADEGH M K. Erratum to: Reliability of a coherent system in a multicomponent stress-strength model[J]. American Journal of Mathematical and Management Sciences, 2021, 40(4): 336-339.
[15] RASEKHI M, SABER M M, YOUSOF H M. Bayesian and classical inference of reliability in multicomponent stress-strength under the generalized logistic model[J]. Communications in Statistics-Theory and Methods, 2021, 50(21): 5114-5125.
[16] MAURYA R K, TRIPATHI Y M. Reliability estimation in a multicomponent stress-strength model for Burr XII distribution under progressive censoring[J]. Brazilian Journal of Probability and Statistics, 2020, 34(2): 345-369.
[17] KOHANSAL A. On estimation of reliability in a multicomponent stress-strength model for a Kumaraswamy distribution based on progressively censored sample[J]. Statistical Papers , 2019, 60(6): 2185-2224.
[18] PRATAP S D, KUMAR J M, YOGESH T, et al. Reliability estimation in a multicomponent stress-strength model for unit Burr Ⅲ distribution under progressive censoring[J]. Quality Technology & Quantitative Management, 2022, 19(5): 605-632.
[19] MAHTO A K, TRIPATHI Y M, KIZILASLAN F. Estimation of reliability in a multicomponent stress-strength model for a general class of inverted exponentiated distributions under progressive censoring[J]. Journal of Statistical Theory and Practice, 2020, 14(4): 58.
[20] JHA M K, DEY S, ALOTAIBI R M, et al. Reliability estimation of a multicomponentstress-strength model for unit Gompertz distribution under progressive Type Ⅱ censoring[J]. Quality and Reliability Engineering International, 2020, 36: 965-987
[21] KOHANSAL A, SHOAEE S. Bayesian and classical estimation of reliability in a multicomponent stress-strength model under adaptive hybrid progressive censored data[J]. Statistical Papers, 2021, 62(1): 309-359.
[22] DEBASIS K, AVIJIT J. Analysis of type-Ⅱ progressively hybrid censored data[J]. Computational Statistics and Data Analysis, 2006, 50(10): 2509-2528.
[23] 刘一鸣. 多部件系统应力强度模型的可靠性分析[D]. 西安:西北工业大学, 2019.
[24] 孙烨, 蒋京京, 王纯杰. 广义极值回归模型下现状数据的贝叶斯估计[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 82-90.
[25] TIERNEY L, KADANE J B. Accurate approximations for posterior moments and marginal densities[J]. Journal of the American Statistical Association, 1986, 81(393): 82-86.
[26] 韦来生, 张伟平.贝叶斯分析[M]. 合肥:中国科学技术大学出版社, 2013.
[27] 罗君念,蔡静,张峰源.广义逆指数分布应力-强度模型的可靠性评估[J]. 湖北民族大学学报(自然科学版), 2023, 41(1): 102-108.
[28] HASTINGS W K. Monte Carlo sampling methods using Markov chains and their applications[J]. Biometrika, 1970, 57(1): 97-109.
[1] SUN Ye, JIANG Jingjing, WANG Chunjie. Bayesian Estimation of Current Status Data with Generalized Extreme Value Regression Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 82-90.
[2] LIANG Xin, CHEN Xiaoling, ZHANG Xingfa, LI Yuan. A Class of Autoregressive Moving Average Model with GARCH Type Errors [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 195-205.
[3] LI Lili, ZHANG Xingfa, LI Yuan, DENG Chunliang. Daily GARCH Model Estimation Using High Frequency Data [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 68-78.
[4] YANG Xiaowei, ZHANG Junjian. Law of Iterated Logarithm and Strong Consistency for Negative Binomial Regression Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(3): 59-69.
[5] DING Xin-yue, XU Mei-ping. Bayesian Estimation for Scale Parameter of Inverse Gamma Distribution under Mlinex Loss Function [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(3): 61-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YUAN Jingjing, ZHENG Yuzhao, XU Chenfeng, YIN Tingjie. Advances in Cytoplasmic Delivery Strategies for Non-Endocytosis-Dependent Biomolecules[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(1): 1 -8 .
[2] TU Guangsheng, KONG Yongjun, SONG Zhechao, YE Kang. Research Progress and Technical Difficulties of Reversible Data Hiding in Encrypted Domain[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 1 -15 .
[3] YANG Yangyang, ZHU Zhenting, YANG Cuiping, LI Shihao, ZHANG Shu, FAN Xiulei, WAN Lei. Research Progress of Anaerobic Digestion Pretreatment of Excess Activated Sludge Based on Bibliometric Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 16 -29 .
[4] XU Lunhui, LI Jinlong, LI Ruonan, CHEN Junyu. Missing Traffic Data Recovery for Road Network Based on Dynamic Generative Adversarial Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 30 -40 .
[5] YANG Hai, XIE Yaqin. Regional Energy Storage Allocation Strategy of 5G Base Station Based on Floyd Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 41 -54 .
[6] YAN Wenwen, WEN Zhong, WANG Shuang, LI Guoxiang, WANG Boyu, WU Yi. AA-CAES Plant and Integrated Demand Response Based Wind Abandonment and Consumption Strategy for the Heating Period[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 55 -68 .
[7] GAN Youchun, WANG Can, HE Xuhui, ZHANG Yu, ZHANG Xuefei, WANG Fan, YU Yazhou. Joint Optimal Operation of Integrated Electricity-Hydrogen-Heat Energy System Based on Concentrating Solar Power Plant and Flexible Load[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 69 -83 .
[8] WANG Xuyang, WANG Changrui, ZHANG Jinfeng, XING Mengyi. Multimodal Sentiment Analysis Based on Cross-Modal Cross-Attention Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 84 -93 .
[9] WANG Weiduo, WANG Yisong, YANG Lei. Descriptive Solution of the Answer Set Programming for Cloud Resource Scheduling[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 94 -104 .
[10] YU Qian, CHEN Qingfeng, HE Naixu, HAN Zongzhao, LU Jiahui. Genetic Algorithm for Community Detection Accelerated by Matrix Operations[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 105 -119 .