Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (1): 1-8.doi: 10.16088/j.issn.1001-6600.2023042406
YUAN Jingjing1, ZHENG Yuzhao1, XU Chenfeng2*, YIN Tingjie1*
[1] TAMEMOTO N, AKISHIBA M, SAKAMOTO K, et al. Rational design principles of attenuated cationic lytic peptides for intracellular delivery of biomacromolecules[J]. Molecular Pharmaceutics, 2020, 17(6): 2175-2185. DOI: 10.1021/acs.molpharmaceut.0c00312. [2] HE W, XING X Y, WANG X L, et al. Nanocarrier-mediated cytosolic delivery of biopharmaceuticals[J]. Advanced Functional Materials, 2020, 30(37): 1910566. DOI: 10.1002/adfm.201910566. [3] SAKAMOTO K, AKISHIBA M, IWATA T, et al. Optimizing charge switching in membrane lytic peptides for endosomal release of biomacromolecules[J]. Angewandte Chemie International Edition, 2020, 59(45): 19990-19998. DOI: 10.1002/anie.202005887. [4] TAI W Y, ZHAO P F, GAO X H. Cytosolic delivery of proteins by cholesterol tagging[J]. Science Advances, 2020, 6(25): eabb0310. DOI: 10.1126/sciadv.abb0310. [5] DU S B, LIEW S S, LI L, et al. Bypassing endocytosis: direct cytosolic delivery of proteins[J]. Journal of the American Chemical Society, 2018, 140(47): 15986-15996. DOI: 10.1021/jacs.8b06584. [6] CHIPER M, NIEDERREITHER K, ZUBER G. Transduction methods for cytosolic delivery of proteins and bioconjugates into living cells[J]. Advanced Healthcare Materials, 2018, 7(6):e1701040. DOI: 10.1002/adhm.201701040. [7] ZHANG X S, LEI T, DU H W. Prospect of cell penetrating peptides in stem cell tracking[J]. Stem Cell Research & Therapy, 2021, 12(1): 457. DOI: 10.1186/s13287-021-02522-3. [8] GUIDOTTI G, BRAMBILLA L, ROSSI D. Cell-penetrating peptides: from basic research to clinics[J]. Trends in Pharmacological Sciences, 2017, 38(4): 406-424. DOI: 10.1016/j.tips.2017.01.003. [9] SINGH T, MURTHY A S N, YANG H J, et al. Versatility of cell-penetrating peptides for intracellular delivery of siRNA[J]. Drug Delivery, 2018, 25(1): 1996-2006. DOI: 10.1080/10717544.2018.1543366. [10] DERAKHSHANKHAH H, JAFARI S. Cell penetrating peptides: a concise review with emphasis on biomedical applications[J]. Biomedicine & Pharmacotherapy, 2018, 108: 1090-1096. DOI: 10.1016/j.biopha.2018.09.097. [11] DOUGHERTY P G, SAHNI A, PEI D H. Understanding cell penetration of cyclic peptides[J].Chemical Reviews, 2019, 119(17): 10241-10287. DOI: 10.1021/acs.chemrev.9b00008. [12] TIAN Y, ZHOU S B. Advances in cell penetrating peptides and their functionalization of polymeric nanoplatforms for drug delivery[J]. Wiley Interdisciplinary Reviews Nanomedicine & Nanobiotechnology, 2021, 13(2): e1668. DOI: 10.1002/wnan.1668. [13] 夏艳梅,于思远,杨晗,等.细胞穿膜肽介导生物大分子入胞机制研究进展[J].中国生物工程杂志,2019,39(10):82-89.DOI: 10.13523/j.cb.20191010. [14] KONATE K, CROMBEZ L, DESHAYES S, et al. Insight into the cellular uptake mechanism of a secondary amphipathic cell-penetrating peptide for siRNA delivery[J]. Biochemistry, 2010, 49(16): 3393-3402. DOI: 10.1021/bi901791x. [15] YU Z L, ZHANG X J, PEI X, et al. Antibody-siRNA conjugates (ARCs) using multifunctional peptide as a tumor enzyme cleavable linker mediated effective intracellular delivery of siRNA[J]. International Journal of Pharmaceutics, 2021, 606: 120940. DOI: 10.1016/j.ijpharm.2021.120940. [16] RAHMAN A, MATTHEWS M A, NOWELL C J, et al. Enhanced nitric oxide production by macrophages treated with a cell-penetrating peptide conjugate[J]. Bioorganic Chemistry, 2022, 123:105763. DOI: 10.1016/j.bioorg.2022.105763. [17] LI M, EHLERS M, SCHLESIGER S, et al. Incorporation of a non-natural arginine analogue into a cyclic peptide leads to formation of positively charged nanofibers capable of gene transfection[J]. Angewandte Chemie International Edition, 2016, 55(2): 598-601. DOI: 10.1002/anie.201508714. [18] WYATT L C, LEWIS J S, ANDREEV O A, et al. Applications of pHLIP technology for cancer imaging and therapy[J]. Trends in Biotechnology, 2017, 35(7): 653-664. DOI: 10.1016/j.tibtech.2017.03.014. [19] 贾学丽,张佳,赵婷,等.低pH插入肽研究概况[J].药学学报,2018,53(3):375-382.DOI: 10.16438/j.0513-4870.2017-0830. [20] SVORONOS A A, BAHAL R, PEREIRA M C, et al. Tumor-targeted, cytoplasmic delivery of large, polar molecules using a pH-low insertion peptide[J]. Molecular Pharmaceutics, 2020, 17(2): 461-471. DOI: 10.1021/acs.molpharmaceut.9b00883. [21] GOLIJANIN J, AMIN A, MOSHNIKOVA A, et al. Targeted imaging of urothelium carcinoma in human bladders by an ICG pHLIP peptide ex vivo[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(42): 11829-11834. DOI: 10.1073/pnas.1610472113. [22] DING G B, MA X H, MENG X, et al. pH low insertion peptide (pHLIP)-decorated polymeric nanovehicle for efficient and pH-responsive siRNA translocation[J]. Materials & Design, 2021, 212:110197. DOI: 10.1016/j.matdes.2021.110197. [23] RESHETNYAK Y K, ANDREEV O A, LEHNERT U, et al. Translocation of molecules into cells by pH-dependent insertion of a transmembrane helix[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(17): 6460-6465. DOI: 10.1073/pnas.0601463103. [24] ZHAO Z N, LI C Y, SONG B, et al. pH low insertion peptide mediated cell division cycle-associated protein 1-siRNA transportation for prostatic cancer therapy targeted to the tumor microenvironment[J]. Biochemical and Biophysical Research Communications, 2018, 503(3): 1761-1767. DOI: 10.1016/j.bbrc.2018.07.110. [25] DING Y, WANG Y Z, ZHOU J P, et al. Direct cytosolic siRNA delivery by reconstituted high density lipoprotein for target-specific therapy of tumor angiogenesis[J]. Biomaterials, 2014, 35(25): 7214-7227. DOI: 10.1016/j.biomaterials.2014.05.009. [26] DING G B, ZHU C C, WANG Q, et al. Molecularly engineered tumor acidity-responsive plant toxin gelonin for safe and efficient cancer therapy[J].Bioactive materials, 2022,18:42-55. DOI: 10.1016/j.bioactmat.2022.02.001. [27] ZHOU J, SHAO Z T, LIU J, et al. From endocytosis to nonendocytosis: the emerging era of gene delivery[J]. ACS Applied Bio Materials, 2020, 3(5): 2686-2701. DOI: 10.1021/acsabm.9b01131. [28] CHEN X H, MANGALA L S, MOOBERRY L, et al. Identifying and targeting angiogenesis-related micrornas in ovarian cancer[J]. Oncogene, 2019, 38(33): 6095-6108. DOI: 10.1038/s41388-019-0862-y. [29] HAN Y, DING B X, ZHAO Z Q, et al. Immune lipoprotein nanostructures inspired relay drug delivery for amplifying antitumor efficiency[J]. Biomaterials, 2018, 185: 205-218. DOI: 10.1016/j.biomaterials.2018.09.016. [30] MAZUR F, CHANDRAWATI R. Membrane fusion models for bioapplications[J]. ChemNanoMat, 2021, 7(3): 223-237. DOI: 10.1002/cnma.202000582. [31] ROBSON MARSDEN H, KOROBKO A V, ZHENG T T, et al. Controlled liposome fusion mediated by SNARE protein mimics[J]. Biomaterials Science, 2013, 1(10): 1046-1054. DOI: 10.1039/c3bm60040h. [32] AL-JAMAL W T, KOSTARELOS K. Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine[J]. Accounts of Chemical Research, 2011, 44(10): 1094-1104. DOI: 10.1021/ar200105p. [33] REY F A, LOK S M. Common features of enveloped viruses and implications for immunogen design for next-generation vaccines[J]. Cell, 2018, 172(6): 1319-1334. DOI: 10.1016/j.cell.2018.02.054. [34] KOLAINAC R, KLEUSCH C, BRAUN T, et al. Deciphering the functional composition of fusogenic liposomes[J]. International Journal of Molecular Sciences, 2018, 19(2): 346. DOI: 10.3390/ijms19020346. [35] CSISZÁR A, HERSCH N, DIELUWEIT S, et al. Novel fusogenic liposomes for fluorescent cell labeling and membrane modification[J]. Bioconjugate Chemistry, 2010, 21(3): 537-543. DOI: 10.1021/bc900470y. [36] DENG H Z, SONG K, ZHAO X F, et al. Tumor microenvironment activated membrane fusogenic liposome with speedy antibody and doxorubicin delivery for synergistic treatment of metastatic tumors[J]. ACS Applied Materials & Interfaces, 2017, 9(11): 9315-9326. DOI: 10.1021/acsami.6b14683. [37] HA D, YANG N N, NADITHE V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: urrent perspectives and future challenges[J]. Acta Pharmaceutica Sinica B, 2016, 6(4): 287-296. DOI: 10.1016/j.apsb.2016.02.001. [38] AKISHIBA M, FUTAKI S. Inducible membrane permeabilization by attenuated lytic peptides: a new concept for accessing cell interiors through ruffled membranes[J]. Molecular Pharmaceutics, 2019, 16(6): 2540-2548. DOI: 10.1021/acs.molpharmaceut.9b00156. [39] YUAN X L, QIN B, YIN H, et al. Virus-like nonvirus cationic liposome for efficient gene delivery via endoplasmic reticulum pathway[J]. ACS Central Science, 2020, 6(2): 174-188. DOI: 10.1021/acscentsci.9b01052. [40] ZHOU Z X, LIU X R, ZHU D C, et al. Nonviral cancer gene therapy: delivery cascade and vector nanoproperty integration[J]. Advanced Drug Delivery Reviews, 2017, 115: 115-154. DOI: 10.1016/j.addr.2017.07.021. [41] QIU C, HAN H H, SUN J, et al. Regulating intracellular fate of siRNA by endoplasmic reticulum membrane-decorated hybrid nanoplexes[J]. Nature Communications, 2019, 10(1): 2702. DOI: 10.1038/s41467-019-10562-w. [42] TORRES A G, GAIT M J. Exploiting cell surface thiols to enhance cellular uptake[J]. Trends in Biotechnology, 2012, 30(4): 185-190. DOI: 10.1016/j.tibtech.2011.12.002. [43] CHUARD N, GASPARINI G, MOREAU D, et al. Strain-promoted thiol-mediated cellular uptake of giant substrates: Liposomes and polymersomes[J]. Angewandte Chemie International Edition, 2017, 56(11): 2947-2950. DOI: 10.1021/anie.201611772. [44] BANG E K, GASPARINI G, MOLINARD G, et al. Substrate-initiated synthesis of cell-penetrating poly (disulfide)s[J]. Journal of the American Chemical Society, 2013, 135(6): 2088-2091. DOI: 10.1021/ja311961k. [45] GASPARINI G, BANG E K, MOLINARD G, et al. Cellular uptake of substrate-initiated cell-penetrating poly (disulfide)s[J]. Journal of the American Chemical Society, 2014, 136(16): 6069-6074. DOI: 10.1021/ja501581b. [46] FU J Q, YU C M, LI L, et al. Intracellular delivery of functional proteins and native drugs by cell-penetrating poly (disulfide)s[J]. Journal of the American Chemical Society, 2015, 137(37): 12153-12160. DOI: 10.1021/jacs.5b08130. [47] ZHOU J, SUN L Q, WANG L P, et al. Self-assembled and size-controllable oligonucleotide nanospheres for effective antisense gene delivery through an endocytosis-independent pathway[J]. Angewandte Chemie International Edition, 2019, 58(16): 5236-5240. DOI: 10.1002/anie.201813665. [48] YU C M, QIAN L H, GE J Y, et al. Cell-penetrating poly(disulfide) assisted intracellular delivery of mesoporous silica nanoparticles for inhibition of mir-21 function and detection of subsequent therapeutic effects[J]. Angewandte Chemie International Edition, 2016, 55(32): 9272-9276. DOI: 10.1002/anie.201602188. [49] YANG W, LIU X C, LI H F, et al. Disulfide-containing molecular sticker assists cellular delivery of DNA nanoassemblies by bypassing endocytosis[J]. CCS Chemistry, 2021, 3(3): 1178-1186. DOI: 10.31635/ccschem.020.202000250. [50] QIAN L H, FU J Q, YUAN P Y, et al. Intracellular delivery of native proteins facilitated by cell-penetrating poly (disulfide)s[J]. Angewandte Chemie International Edition, 2018, 57(6): 1532-1536. DOI: 10.1002/anie.201711651. [51] CAI H, GABRYELCZYK B, MANIMEKALAI M S S, et al. Self-coacervation of modular squid beak proteins: a comparative study[J]. Soft Matter, 2017, 13(42): 7740-7752. DOI: 10.1039/c7sm01352c. [52] LIM Z W, PING Y, MISEREZ A. Glucose-responsive peptide coacervates with high encapsulation efficiency for controlled release of insulin[J]. Bioconjugate Chemistry, 2018, 29(7): 2176-2180. DOI: 1021/acs.bioconjchem.8b00369. [53] SUN Y, LAU S Y, LIM Z W, et al. Phase-separating peptides for direct cytosolic delivery and redox-activated release of macromolecular therapeutics[J]. Nature Chemistry, 2022, 14(3): 274-283. DOI: 10.1038/s41557-021-00854-4. |
[1] | WU Ruiqi, LIANG Xiaolong. Research Advances in Ultrasound Mediated Drug Delivery [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 271-285. |
|