Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (1): 9-17.doi: 10.16088/j.issn.1001-6600.2023032702
Previous Articles Next Articles
YIN Liya1, DING Kai1, DU Wenze1, LU Tianliang2, WANG Jianfeng1, HAN Li1,3*
[1] 肖彤, 马捷, 王雁, 等. 铁改性掺氮碳纤维活化过一硫酸盐降解双酚A[J]. 环境科学学报, 2021, 41(7): 2766-2773. DOI: 10.13671/j.hjkxxb.2020.0543. [2] LIN L, YANG H R, XU X C. Effects of water pollution on human health and disease heterogeneity: a review[J]. Frontiers in Environmental Science, 2022, 10: 880246. DOI: 10.3389/fenvs.2022.880246. [3] VIEIRA W T, DE FARIAS M B, SPAOLONZI M P, et al. Latest advanced oxidative processes applied for the removal of endocrine disruptors from aqueous media: a critical report[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105748. DOI: 10.1016/j.jece.2021.105748. [4] LU Z Y, MA Y L, ZHANG J T, et al. A critical review of antibiotic removal strategies: performance and mechanisms[J]. Journal of Water Process Engineering, 2020, 38: 101681. DOI: 10.1016/j.jwpe.2020.101681. [5] LEUSCH F D L, NEALE P A, BUSETTI F, et al. Transformation of endocrine disrupting chemicals, pharmaceutical and personal care products during drinking water disinfection[J]. Science of the Total Environment, 2019, 657: 1480-1490. DOI: 10.1016/j.scitotenv.2018.12.106. [6] ISMAIL G A, SAKAI H. Review on effect of different type of dyes on advanced oxidation processes (AOPs) for textile color removal[J]. Chemosphere, 2022, 291: 132906. DOI: 10.1016/j.chemosphere.2021.132906. [7] SARAVANAN A, DEIVAYANAI V C, KUMAR P S, et al. A detailed review on advanced oxidation process in treatment of wastewater: mechanism, challenges and future outlook[J]. Chemosphere, 2022, 308(3): 136524. DOI: 10.1016/j.chemosphere.2022.136524. [8] 杨文, 苏迎杰, 侯东睿, 等. CuO/MIL(Cr, Cu)复合材料的制备及其类芬顿催化降解苯酚性能研究[J]. 广西师范大学学报(自然科学版), 2023, 41(3): 210-220. DOI: 10.16088/j.issn.1001-6600.2022050903. [9] BELLO M M, RAMAN A A A. Synergy of adsorption and advanced oxidation processes in recalcitrant wastewater treatment[J]. Environmental Chemistry Letters, 2019, 17(2): 1125-1142. DOI: 10.1007/s10311-018-00842-0. [10] DOMINGUES E, SILVA M J, VAZ T, et al. Sulfate radical based advanced oxidation processes for agro-industrial effluents treatment: a comparative review with Fenton’s peroxidation[J]. Science of the Total Environment, 2022, 832: 155029. DOI: 10.1016/j.scitotenv.2022.155029. [11] GIANNAKIS S, LIN K Y A, GHANBARI F. A review of the recent advances on the treatment of industrial wastewaters by sulfate radical-based advanced oxidation processes (SR-AOPs)[J]. Chemical Engineering Journal, 2021, 406: 127083. DOI: 10.1016/j.cej.2020.127083. [12] 刘祺, 陈蕾. 基于硫酸根自由基的高级氧化技术在污水处理中的应用[J]. 应用化工, 2022, 51(5): 1383-1388. DOI: 10.16581/j.cnki.issn1671-3206.2022.05.006. [13] 袁蓁, 隋铭皓, 袁博杰, 等. 基于硫酸根自由基的活化过硫酸盐新型高级氧化技术研究新进展[J]. 四川环境, 2016, 35(5): 142-146. DOI: 10.14034/j.cnki.schj.2016.05.029. [14] LYU H H, ZHANG Q R, SHEN B X. Application of biochar and its composites in catalysis[J]. Chemosphere, 2020, 240: 124842. DOI: 10.1016/j.chemosphere.2019.124842. [15] HUSSAIN I, LI M Y, ZHANG Y Q, et al. Insights into the mechanism of persulfate activation with nZVI/BC nanocomposite for the degradation of nonylphenol[J]. Chemical Engineering Journal, 2017, 311: 163-172. DOI: 10.1016/j.cej.2016.11.085. [16] LIANG G W, YANG Z, WANG Z W, et al. Relying on the non-radical pathways for selective degradation organic pollutants in Fe and Cu co-doped biochar/peroxymonosulfate system: the roles of Cu, Fe, defect sites and ketonic group[J]. Separation and Purification Technology, 2021, 279: 119697. DOI: 10.1016/j.seppur.2021.119697. [17] ZHANG Y Z, LIANG S X, HE R, et al. Enhanced adsorption and degradation of antibiotics by doping corncob biochar/PMS with heteroatoms at different preparation temperatures: mechanism, pathway, and relative contribution of reactive oxygen spec[J]. Journal of Water Process Engineering, 2022, 46: 102626. DOI: 10.1016/j.jwpe.2022.102626. [18] YU J F, TANG L, PANG Y, et al. Non-radical oxidation by N, S, P co-doped biochar for persulfate activation: different roles of exogenous P/S doping, and electron transfer path[J]. Journal of Cleaner Production, 2022, 374: 133995. DOI: 10.1016/j.jclepro.2022.133995. [19] 魏思洁, 王寿兵. 生物炭制备技术及生物炭在生态环境领域的应用新进展[J]. 复旦学报(自然科学版), 2022, 61(3): 365-374. DOI: 10.15943/j.cnki.fdxb-jns.2022.03.011. [20] 吴飞, 任伟, 程成, 等. 基于生物炭的高级氧化技术降解水中有机污染物[J]. 化学进展, 2022, 34(4): 992-1010. DOI: 10.7536/PC210109. [21] 刘青松, 白国敏. 生物炭及其改性技术修复土壤重金属污染研究进展[J]. 应用化工, 2022, 51(11): 3285-3291, 3299. DOI: 10.16581/j.cnki.issn1671-3206.20221101.009. [22] 桑瑞, 孟宪荣, 许伟, 等. 污泥基生物炭活化过硫酸钠降解水中萘的研究[J]. 现代化工, 2022, 42(7): 182-187. DOI: 10.16606/j.cnki.issn0253-4320.2022.07.035. [23] LIU Y Y, SUN Y Q, WAN Z H, et al. Tailored design of food waste hydrochar for efficient adsorption and catalytic degradation of refractory organic contaminant[J]. Journal of Cleaner Production, 2021, 310: 127482. DOI: 10.1016/j.jclepro.2021.127482. [24] ZHANG Y N, FAN S C, LIU T, et al. A review of biochar prepared by microwave-assisted pyrolysis of organic wastes[J]. Sustainable Energy Technologies and Assessments, 2022, 50: 101873. DOI: 10.1016/j.seta.2021.101873. [25] 韩成浩, 苑玥珂, 芦天亮, 等. 微波离子热合成研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(6): 37-49. DOI: 10.16088/j.issn.1001-6600.2021080602. [26] 任少云, 程红丹, 张伟平, 等. 生物炭制备方法的研究进展[J]. 高师理科学刊, 2017, 37(8): 74-76. DOI: 10.3969/j.issn.1007-9831.2017.08.017. [27] 付兵, 杨兵, 朱鹏飞, 等. 烟梗热解气化制取生物炭方法探索[J]. 再生资源与循环经济, 2016, 9(10): 41-44. DOI: 10.3969/j.issn.1674-0912.2016.10.015. [28] PAN X Q, GU Z P, CHEN W M, et al. Preparation of biochar and biochar composites and their application in a Fenton-like process for wastewater decontamination: a review[J]. Science of the Total Environment, 2021, 754: 142104. DOI: 10.1016/j.scitotenv.2020.142104. [29] 陈思思, 唐兴颖, 任鹏炜, 等. 催化剂在生物质水热碳化过程中应用的研究进展[J]. 环境工程, 2023, 41(4): 195-204. DOI: 10.13205/j.hjgc.202304027. [30] YE S J, ZENG G M, TAN X F, et al. Nitrogen-doped biochar fiber with graphitization from Boehmeria nivea for promoted peroxymonosulfate activation and non-radical degradation pathways with enhancing electron transfer[J]. Applied Catalysis B:Environmental, 2020. 269: 118850. DOI: 10.1016/j.apcatb.2020.118850. [31] LIU Z F, HE M, TANG L, et al. Dual redox cycles of Mn(Ⅱ)/Mn(Ⅲ) and Mn(Ⅲ)/Mn(Ⅳ) on porous Mn/N co-doped biochar surfaces for promoting peroxymonosulfate activation and ciprofloxacin degradation[J]. Journal of Colloid and Interface Science, 2022, 634: 255-267. DOI: 10.1016/j.jcis.2022.12.008. [32] ZHU H Y, ZHANG Z, ZHOU Y Y, et al. Co, N co-doped carbon derived from tea residue as efficient cathode catalyst in microbial fuel cells for swine wastewater treatment and the microbial community analysis[J]. Journal of Water Process Engineering, 2022, 45: 102471. DOI: 10.1016/j.jwpe.2021.102471. [33] ZHANG H L, YAN Z C, WAN J Q, et al. Synthesis of Fe-Nx site-based iron-nitrogen co-doped biochar catalysts for efficient removal of sulfamethoxazole from water by activation of persulfate: electron transfer mechanism of non-free radical degradation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 654: 130174. DOI: 10.1016/j.colsurfa.2022.130174. [34] 肖鹏飞, 安璐, 韩爽. 炭质材料在活化过硫酸盐高级氧化技术中的应用进展[J]. 化工进展, 2020, 39(8): 3293-3306. DOI: 10.16085/j.issn.1000-6613.2019-1833. [35] HUANG K C, YANG S Q, LIU X H, et al. Adsorption of antibiotics from wastewater by cabbage-based N, P co-doped mesoporous carbon materials[J]. Journal of Cleaner Production, 2023, 391: 136174. DOI: 10.1016/j.jclepro.2023.136174. [36] ZHANG H D, LI L J, LI Y J, et al. N and S co-doped pine needle biochar activated peroxydisulfate for antibiotic degradation[J]. Journal of Cleaner Production, 2022, 379: 134619. DOI: 10.1016/j.jclepro.2022.134619. [37] XU Y, LIU S, WANG M, et al. Thiourea-assisted one-step fabrication of a novel nitrogen and sulfur co-doped biochar from nanocellulose as metal-free catalyst for efficient activation of peroxymonosulfate[J]. Journal of Hazardous Materials, 2021, 416: 125796. DOI: 10.1016/j.jhazmat.2021.125796. [38] 罗晗倬. 氮、钴共掺杂秸秆衍生生物炭活化过硫酸盐降解环丙沙星的研究[D]. 长沙: 湖南大学, 2021. DOI: 10.27135/d.cnki.ghudu.2021.002044. [39] XI M F, CUI K P, CUI M S, et al. Enhanced norfloxacin degradation by iron and nitrogen co-doped biochar: revealing the radical and nonradical co-dominant mechanism of persulfate activation[J]. Chemical Engineering Journal, 2021, 420: 129902. DOI: 10.1016/j.cej.2021.129902. [40] 慎雅倩. 铁氮共掺杂碳纳米材料活化过一硫酸盐降解有机污染物的性能及机理研究[D]. 成都: 电子科技大学, 2021. DOI: 10.27005/d.cnki.gdzku.2021.002587. [41] WANG Y J, WANG L, MA F, et al. FeOx@graphitic carbon core-shell embedded in microporous N-doped biochar activated peroxydisulfate for removal of Bisphenol A: multiple active sites induced non-radical/radical mechanism[J]. Chemical Engineering Journal, 2022, 438: 135552. DOI: 10.1016/j.cej.2022.135552. [42] SUN P, LIU H, FENG M B, et al. Dual nonradical degradation of acetaminophen by peroxymonosulfate activation with highly reusable and efficient N/S co-doped ordered mesoporous carbon[J]. Separation and Purification Technology, 2021, 268: 118697. DOI: 10.1016/j.seppur.2021.118697. [43] WANG S Z, WANG J L. Peroxymonosulfate activation by Co9S8@S and N co-doped biochar for sulfamethoxazole degradation[J]. Chemical Engineering Journal, 2020, 385: 123933. DOI: 10.1016/j.cej.2019.123933. [44] 侯子良. 普鲁士蓝掺杂改性生物炭活化PDS降解CTH/BPA[D]. 兰州: 兰州大学, 2022. DOI: 10.27204/d.cnki. glzhu.2022.000836. [45] 黄仕元, 林森焕, 董雯, 等. 锰氮共掺杂稻壳生物炭活化过二硫酸盐降解酸性橙[J]. 复合材料学报, 2023, 40(2): 1071-1084. DOI: 10.13801/j.cnki.fhclxb.20220328.001. [46] ZHU H, GUO A, WANG S M, et al. Efficient tetracycline degradation via peroxymonosulfate activation by magnetic Co/N co-doped biochar: emphasizing the important role of biochar graphitization[J]. Chemical Engineering Journal, 2022, 450: 138428. DOI: 10.1016/j.cej.2022.138428. [47] HO S H, CHEN Y D, LI R X, et al. N-doped graphitic biochars from C-phycocyanin extracted Spirulina residue for catalytic persulfate activation toward nonradical disinfection and organic oxidation[J]. Water Research, 2019, 159: 77-86. DOI: 10.1016/j.watres.2019.05.008. [48] ZHANG K J, MIN X Y, ZHANG T Z, et al. Selenium and nitrogen co-doped biochar as a new metal-free catalyst for adsorption of phenol and activation of peroxymonosulfate: elucidating the enhanced catalytic performance and stability[J]. Journal of Hazardous Materials, 2021, 413: 125294. DOI: 10.1016/j.jhazmat.2021.125294. [49] XIE J, XU P F, LIU M H, et al. Anchoring phosphorus on in-situ nitrogen-doped biochar by mechanical milling for promoted electron transfer from diclofenac sodium to peroxymonosulfate[J]. Separation and Purification Technology, 2022, 301: 121964. DOI: 10.1016/j.seppur.2022.121964. [50] DOU J B, CHENG J, LU Z J, et al. Biochar co-doped with nitrogen and boron switching the free radical based peroxydisulfate activation into the electron-transfer dominated nonradical process[J]. Applied Catalysis B: Environmental, 2022, 301: 120832. DOI: 10.1016/j.apcatb.2021.120832. [51] OH W D, ZAENI J R J, LISAK G, et al. Accelerated organics degradation by peroxymonosulfate activated with biochar co-doped with nitrogen and sulfur[J]. Chemosphere, 2021, 277: 130313. DOI: 10.1016/j.chemosphere.2021.130313. [52] CHOONG Z Y, GASIM M F, LIN K Y A, et al. Unravelling the formation mechanism and performance of nitrogen, sulfur codoped biochar as peroxymonosulfate activator for gatifloxacin removal[J]. Chemical Engineering Journal, 2023, 451: 138958. DOI: 10.1016/j.cej.2022.138958. |
[1] | DING Suya, MA Jiangming, QIN Yunbin, HUANG Fangling, SONG Lili, LIU Wenqing, LI Mengxia, HE Xinnuo. Effects of Biochar on Soil Organic Carbon Composition and Carbon Pool Management Index of Moso Bamboo Forests [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(1): 180-190. |
[2] | WANG Linqing, YAN Tao, CHEN Yongjian, LI Furong, WANG Xu, LI Wenying, DU Ruiying, YANG Xiuli. Passivation Effect of Soil Conditioner on Soil Lead and Cadmium under Different Water Conditions [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(4): 231-242. |
[3] | DENG Hua, ZHANG Junyu, HUANG Rui, WANG Wei, HU Lening. Adsorption Capacity and Mechanism of ZnO Loading Bamboo Biochar for Cr(Ⅵ) [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 131-142. |
[4] | LIANG Jiayi, WANG Yongsen, DUAN Ming, LI Yi, CHEN Zhe, YU Fangming, LIU Kehui. Effects of Biochar on Soil Available Cadmium and Cadmium Uptake by Plants:A Meta Analysis [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 1-12. |
[5] | XIONG Xiao-li, CHEN Cheng, LUO Xue-gang. Extraction of Polyethylene Wax Residues by High-temperature Soxhlet Apparatus in Soil and Its Degradation in Root Cellar [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(4): 101-107. |
[6] | ZHANG Zong-wei, LI Yan, CHU Fei-xue. Degradation of Ammonia Nitrogen in Wastewater by Lanthanon and Fe3+ Doped TiO2 Photocatalysis [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(2): 117-121. |
[7] | TANG Xiao-lin, WANG Yue-chuan, HE Xing-cun, HUANG Zhi, CHEN Meng-lin. Degradation of Reactive Turquoise Blue KN-G by MechanochemistryMethod [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 52-56. |
[8] | LI Yue-jun, CAO Tie-ping, WANG Chang-hua. Preparation and Photocatalytic Properties of BiOCl Composite Nanofibers [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(4): 72-75. |
|