Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (1): 1-8.doi: 10.16088/j.issn.1001-6600.2023042406

    Next Articles

Advances in Cytoplasmic Delivery Strategies for Non-Endocytosis-Dependent Biomolecules

YUAN Jingjing1, ZHENG Yuzhao1, XU Chenfeng2*, YIN Tingjie1*   

  1. 1. School of Pharmacy, China Pharmaceutical University, Nanjing Jiangsu 210000, China;
    2. Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei 430022, China
  • Received:2023-04-24 Revised:2023-06-19 Online:2024-01-25 Published:2024-01-19

Abstract: Biomacromolecular drugs have become an important component of the new generation of therapeutic drugs due to their high efficiency and specificity. However, their molecular stability are poor, and they are prone to enzymatic hydrolysis, and are difficult to cross biofilms. The effectiveness of traditional nano delivery strategies for biomacromolecule drugs is mainly limited by the low escape efficiency of lysosome. It is of great significance to develop endocytosis independent direct cytoplasmic delivery strategies. This paper reviews the effect mechanism and research progress of cell penetrating peptide, low pH insertion peptide, scavenger receptor mediated non endocytosis, membrane fusion, endoplasmic reticulum pathway, mercaptan mediated, non endosome capture based intracellular delivery strategy of biomacromolecule drugs based on liquid-liquid phase separation technology, and analyzes the difficulties in technology transformation.

Key words: biomacromolecular drugs, cell penetrating peptide, mercaptol mediated entry into cells, endoplasmic reticulum pathway, membrane fusion

CLC Number:  R943
[1] TAMEMOTO N, AKISHIBA M, SAKAMOTO K, et al. Rational design principles of attenuated cationic lytic peptides for intracellular delivery of biomacromolecules[J]. Molecular Pharmaceutics, 2020, 17(6): 2175-2185. DOI: 10.1021/acs.molpharmaceut.0c00312.
[2] HE W, XING X Y, WANG X L, et al. Nanocarrier-mediated cytosolic delivery of biopharmaceuticals[J]. Advanced Functional Materials, 2020, 30(37): 1910566. DOI: 10.1002/adfm.201910566.
[3] SAKAMOTO K, AKISHIBA M, IWATA T, et al. Optimizing charge switching in membrane lytic peptides for endosomal release of biomacromolecules[J]. Angewandte Chemie International Edition, 2020, 59(45): 19990-19998. DOI: 10.1002/anie.202005887.
[4] TAI W Y, ZHAO P F, GAO X H. Cytosolic delivery of proteins by cholesterol tagging[J]. Science Advances, 2020, 6(25): eabb0310. DOI: 10.1126/sciadv.abb0310.
[5] DU S B, LIEW S S, LI L, et al. Bypassing endocytosis: direct cytosolic delivery of proteins[J]. Journal of the American Chemical Society, 2018, 140(47): 15986-15996. DOI: 10.1021/jacs.8b06584.
[6] CHIPER M, NIEDERREITHER K, ZUBER G. Transduction methods for cytosolic delivery of proteins and bioconjugates into living cells[J]. Advanced Healthcare Materials, 2018, 7(6):e1701040. DOI: 10.1002/adhm.201701040.
[7] ZHANG X S, LEI T, DU H W. Prospect of cell penetrating peptides in stem cell tracking[J]. Stem Cell Research & Therapy, 2021, 12(1): 457. DOI: 10.1186/s13287-021-02522-3.
[8] GUIDOTTI G, BRAMBILLA L, ROSSI D. Cell-penetrating peptides: from basic research to clinics[J]. Trends in Pharmacological Sciences, 2017, 38(4): 406-424. DOI: 10.1016/j.tips.2017.01.003.
[9] SINGH T, MURTHY A S N, YANG H J, et al. Versatility of cell-penetrating peptides for intracellular delivery of siRNA[J]. Drug Delivery, 2018, 25(1): 1996-2006. DOI: 10.1080/10717544.2018.1543366.
[10] DERAKHSHANKHAH H, JAFARI S. Cell penetrating peptides: a concise review with emphasis on biomedical applications[J]. Biomedicine & Pharmacotherapy, 2018, 108: 1090-1096. DOI: 10.1016/j.biopha.2018.09.097.
[11] DOUGHERTY P G, SAHNI A, PEI D H. Understanding cell penetration of cyclic peptides[J].Chemical Reviews, 2019, 119(17): 10241-10287. DOI: 10.1021/acs.chemrev.9b00008.
[12] TIAN Y, ZHOU S B. Advances in cell penetrating peptides and their functionalization of polymeric nanoplatforms for drug delivery[J]. Wiley Interdisciplinary Reviews Nanomedicine & Nanobiotechnology, 2021, 13(2): e1668. DOI: 10.1002/wnan.1668.
[13] 夏艳梅,于思远,杨晗,等.细胞穿膜肽介导生物大分子入胞机制研究进展[J].中国生物工程杂志,2019,39(10):82-89.DOI: 10.13523/j.cb.20191010.
[14] KONATE K, CROMBEZ L, DESHAYES S, et al. Insight into the cellular uptake mechanism of a secondary amphipathic cell-penetrating peptide for siRNA delivery[J]. Biochemistry, 2010, 49(16): 3393-3402. DOI: 10.1021/bi901791x.
[15] YU Z L, ZHANG X J, PEI X, et al. Antibody-siRNA conjugates (ARCs) using multifunctional peptide as a tumor enzyme cleavable linker mediated effective intracellular delivery of siRNA[J]. International Journal of Pharmaceutics, 2021, 606: 120940. DOI: 10.1016/j.ijpharm.2021.120940.
[16] RAHMAN A, MATTHEWS M A, NOWELL C J, et al. Enhanced nitric oxide production by macrophages treated with a cell-penetrating peptide conjugate[J]. Bioorganic Chemistry, 2022, 123:105763. DOI: 10.1016/j.bioorg.2022.105763.
[17] LI M, EHLERS M, SCHLESIGER S, et al. Incorporation of a non-natural arginine analogue into a cyclic peptide leads to formation of positively charged nanofibers capable of gene transfection[J]. Angewandte Chemie International Edition, 2016, 55(2): 598-601. DOI: 10.1002/anie.201508714.
[18] WYATT L C, LEWIS J S, ANDREEV O A, et al. Applications of pHLIP technology for cancer imaging and therapy[J]. Trends in Biotechnology, 2017, 35(7): 653-664. DOI: 10.1016/j.tibtech.2017.03.014.
[19] 贾学丽,张佳,赵婷,等.低pH插入肽研究概况[J].药学学报,2018,53(3):375-382.DOI: 10.16438/j.0513-4870.2017-0830.
[20] SVORONOS A A, BAHAL R, PEREIRA M C, et al. Tumor-targeted, cytoplasmic delivery of large, polar molecules using a pH-low insertion peptide[J]. Molecular Pharmaceutics, 2020, 17(2): 461-471. DOI: 10.1021/acs.molpharmaceut.9b00883.
[21] GOLIJANIN J, AMIN A, MOSHNIKOVA A, et al. Targeted imaging of urothelium carcinoma in human bladders by an ICG pHLIP peptide ex vivo[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(42): 11829-11834. DOI: 10.1073/pnas.1610472113.
[22] DING G B, MA X H, MENG X, et al. pH low insertion peptide (pHLIP)-decorated polymeric nanovehicle for efficient and pH-responsive siRNA translocation[J]. Materials & Design, 2021, 212:110197. DOI: 10.1016/j.matdes.2021.110197.
[23] RESHETNYAK Y K, ANDREEV O A, LEHNERT U, et al. Translocation of molecules into cells by pH-dependent insertion of a transmembrane helix[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(17): 6460-6465. DOI: 10.1073/pnas.0601463103.
[24] ZHAO Z N, LI C Y, SONG B, et al. pH low insertion peptide mediated cell division cycle-associated protein 1-siRNA transportation for prostatic cancer therapy targeted to the tumor microenvironment[J]. Biochemical and Biophysical Research Communications, 2018, 503(3): 1761-1767. DOI: 10.1016/j.bbrc.2018.07.110.
[25] DING Y, WANG Y Z, ZHOU J P, et al. Direct cytosolic siRNA delivery by reconstituted high density lipoprotein for target-specific therapy of tumor angiogenesis[J]. Biomaterials, 2014, 35(25): 7214-7227. DOI: 10.1016/j.biomaterials.2014.05.009.
[26] DING G B, ZHU C C, WANG Q, et al. Molecularly engineered tumor acidity-responsive plant toxin gelonin for safe and efficient cancer therapy[J].Bioactive materials, 2022,18:42-55. DOI: 10.1016/j.bioactmat.2022.02.001.
[27] ZHOU J, SHAO Z T, LIU J, et al. From endocytosis to nonendocytosis: the emerging era of gene delivery[J]. ACS Applied Bio Materials, 2020, 3(5): 2686-2701. DOI: 10.1021/acsabm.9b01131.
[28] CHEN X H, MANGALA L S, MOOBERRY L, et al. Identifying and targeting angiogenesis-related micrornas in ovarian cancer[J]. Oncogene, 2019, 38(33): 6095-6108. DOI: 10.1038/s41388-019-0862-y.
[29] HAN Y, DING B X, ZHAO Z Q, et al. Immune lipoprotein nanostructures inspired relay drug delivery for amplifying antitumor efficiency[J]. Biomaterials, 2018, 185: 205-218. DOI: 10.1016/j.biomaterials.2018.09.016.
[30] MAZUR F, CHANDRAWATI R. Membrane fusion models for bioapplications[J]. ChemNanoMat, 2021, 7(3): 223-237. DOI: 10.1002/cnma.202000582.
[31] ROBSON MARSDEN H, KOROBKO A V, ZHENG T T, et al. Controlled liposome fusion mediated by SNARE protein mimics[J]. Biomaterials Science, 2013, 1(10): 1046-1054. DOI: 10.1039/c3bm60040h.
[32] AL-JAMAL W T, KOSTARELOS K. Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine[J]. Accounts of Chemical Research, 2011, 44(10): 1094-1104. DOI: 10.1021/ar200105p.
[33] REY F A, LOK S M. Common features of enveloped viruses and implications for immunogen design for next-generation vaccines[J]. Cell, 2018, 172(6): 1319-1334. DOI: 10.1016/j.cell.2018.02.054.
[34] KOLAŠINAC R, KLEUSCH C, BRAUN T, et al. Deciphering the functional composition of fusogenic liposomes[J]. International Journal of Molecular Sciences, 2018, 19(2): 346. DOI: 10.3390/ijms19020346.
[35] CSISZÁR A, HERSCH N, DIELUWEIT S, et al. Novel fusogenic liposomes for fluorescent cell labeling and membrane modification[J]. Bioconjugate Chemistry, 2010, 21(3): 537-543. DOI: 10.1021/bc900470y.
[36] DENG H Z, SONG K, ZHAO X F, et al. Tumor microenvironment activated membrane fusogenic liposome with speedy antibody and doxorubicin delivery for synergistic treatment of metastatic tumors[J]. ACS Applied Materials & Interfaces, 2017, 9(11): 9315-9326. DOI: 10.1021/acsami.6b14683.
[37] HA D, YANG N N, NADITHE V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: urrent perspectives and future challenges[J]. Acta Pharmaceutica Sinica B, 2016, 6(4): 287-296. DOI: 10.1016/j.apsb.2016.02.001.
[38] AKISHIBA M, FUTAKI S. Inducible membrane permeabilization by attenuated lytic peptides: a new concept for accessing cell interiors through ruffled membranes[J]. Molecular Pharmaceutics, 2019, 16(6): 2540-2548. DOI: 10.1021/acs.molpharmaceut.9b00156.
[39] YUAN X L, QIN B, YIN H, et al. Virus-like nonvirus cationic liposome for efficient gene delivery via endoplasmic reticulum pathway[J]. ACS Central Science, 2020, 6(2): 174-188. DOI: 10.1021/acscentsci.9b01052.
[40] ZHOU Z X, LIU X R, ZHU D C, et al. Nonviral cancer gene therapy: delivery cascade and vector nanoproperty integration[J]. Advanced Drug Delivery Reviews, 2017, 115: 115-154. DOI: 10.1016/j.addr.2017.07.021.
[41] QIU C, HAN H H, SUN J, et al. Regulating intracellular fate of siRNA by endoplasmic reticulum membrane-decorated hybrid nanoplexes[J]. Nature Communications, 2019, 10(1): 2702. DOI: 10.1038/s41467-019-10562-w.
[42] TORRES A G, GAIT M J. Exploiting cell surface thiols to enhance cellular uptake[J]. Trends in Biotechnology, 2012, 30(4): 185-190. DOI: 10.1016/j.tibtech.2011.12.002.
[43] CHUARD N, GASPARINI G, MOREAU D, et al. Strain-promoted thiol-mediated cellular uptake of giant substrates: Liposomes and polymersomes[J]. Angewandte Chemie International Edition, 2017, 56(11): 2947-2950. DOI: 10.1021/anie.201611772.
[44] BANG E K, GASPARINI G, MOLINARD G, et al. Substrate-initiated synthesis of cell-penetrating poly (disulfide)s[J]. Journal of the American Chemical Society, 2013, 135(6): 2088-2091. DOI: 10.1021/ja311961k.
[45] GASPARINI G, BANG E K, MOLINARD G, et al. Cellular uptake of substrate-initiated cell-penetrating poly (disulfide)s[J]. Journal of the American Chemical Society, 2014, 136(16): 6069-6074. DOI: 10.1021/ja501581b.
[46] FU J Q, YU C M, LI L, et al. Intracellular delivery of functional proteins and native drugs by cell-penetrating poly (disulfide)s[J]. Journal of the American Chemical Society, 2015, 137(37): 12153-12160. DOI: 10.1021/jacs.5b08130.
[47] ZHOU J, SUN L Q, WANG L P, et al. Self-assembled and size-controllable oligonucleotide nanospheres for effective antisense gene delivery through an endocytosis-independent pathway[J]. Angewandte Chemie International Edition, 2019, 58(16): 5236-5240. DOI: 10.1002/anie.201813665.
[48] YU C M, QIAN L H, GE J Y, et al. Cell-penetrating poly(disulfide) assisted intracellular delivery of mesoporous silica nanoparticles for inhibition of mir-21 function and detection of subsequent therapeutic effects[J]. Angewandte Chemie International Edition, 2016, 55(32): 9272-9276. DOI: 10.1002/anie.201602188.
[49] YANG W, LIU X C, LI H F, et al. Disulfide-containing molecular sticker assists cellular delivery of DNA nanoassemblies by bypassing endocytosis[J]. CCS Chemistry, 2021, 3(3): 1178-1186. DOI: 10.31635/ccschem.020.202000250.
[50] QIAN L H, FU J Q, YUAN P Y, et al. Intracellular delivery of native proteins facilitated by cell-penetrating poly (disulfide)s[J]. Angewandte Chemie International Edition, 2018, 57(6): 1532-1536. DOI: 10.1002/anie.201711651.
[51] CAI H, GABRYELCZYK B, MANIMEKALAI M S S, et al. Self-coacervation of modular squid beak proteins: a comparative study[J]. Soft Matter, 2017, 13(42): 7740-7752. DOI: 10.1039/c7sm01352c.
[52] LIM Z W, PING Y, MISEREZ A. Glucose-responsive peptide coacervates with high encapsulation efficiency for controlled release of insulin[J]. Bioconjugate Chemistry, 2018, 29(7): 2176-2180. DOI: 1021/acs.bioconjchem.8b00369.
[53] SUN Y, LAU S Y, LIM Z W, et al. Phase-separating peptides for direct cytosolic delivery and redox-activated release of macromolecular therapeutics[J]. Nature Chemistry, 2022, 14(3): 274-283. DOI: 10.1038/s41557-021-00854-4.
[1] WU Ruiqi, LIANG Xiaolong. Research Advances in Ultrasound Mediated Drug Delivery [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 271-285.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LUO Yun-yan, LI Rong-zheng, LI Bing, DING Chen-xu. Optimization of Extraction Process of Alkaloids from Meconopsis horridula Hook. f. & Thomson by Response Surface Methodology[J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(4): 84 -90 .
[2] DONG Shulong, MA Jiangming, XIN Wenjie. Research Progress and Trend of Landscape Visual Evaluation —Knowledge Atlas Analysis Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 1 -13 .
[3] GUO Jialiang, JIN Ting. Semantic Enhancement-Based Multimodal Sentiment Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 14 -25 .
[4] WU Zhengqing, CAO Hui, LIU Baokai. Chinese Fake Review Detection Based on Attention Convolutional Neural Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 26 -36 .
[5] LIANG Zhengyou, CAI Junmin, SUN Yu, CHEN Lei. Point Cloud Classification Based on Residual Dynamic Graph Convolution and Feature Enhancement[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 37 -48 .
[6] OUYANG Shuxin, WANG Mingjun, RONG Chuitian, SUN Huabo. Anomaly Detection of Multidimensional QAR Data Based on Improved LSTM[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 49 -60 .
[7] LI Yiyang, ZENG Caibin, HUANG Zaitang. Random Attractors for Chemostat Model with Wall Attachment Driven by Fractional Brownian Motion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 61 -68 .
[8] LI Pengbo, LI Yongxiang. Radial Symmetric Solutions of p-Laplace Equations on Exterior Domains[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 69 -75 .
[9] WU Zixian, CHENG Jun, FU Jianling, ZHOU Xinwen, XIE Jialong, NING Quan. Analysis of PI-based Event-Triggered Control Design for Semi-Markovian Power Systems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 76 -85 .
[10] CHENG Lei, YAN Puxuan, DU Bohao, YE Si, ZOU Huahong. Thermal Stability and Dielectric Relaxation of MOF-2 Synthesized in Aqueous Phase[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 86 -95 .