Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (3): 141-150.doi: 10.16088/j.issn.1001-6600.2023060701
Previous Articles Next Articles
HUANG Kaijiao1,2, XIAO Feiyan1*
[1] VOLTERRA V. Fluctuations in the abundance of a species considered mathematically[J]. Nature, 1926, 118(2972): 558-560. [2] BEDDINGTON J R. Mutual interference between parasites or predators and its effect on searching efficiency[J]. Journal of Animal Ecology, 1975, 44(1): 331-340. [3] DEANGELIS D L, GOLDSTEIN R A, O'NEILL R V. A model for tropic interaction[J]. Ecology, 1975, 56(4): 881-892. [4] 陈滨,王明新. 带有扩散和Beddington-DeAngelis响应函数的捕食模型的正平衡态[J]. 数学年刊A辑, 2007,28A(4): 495-506. [5] 李波, 梁子维. 一类具有Beddington-DeAngelis响应函数的阶段结构捕食模型的稳定性[J]. 数学物理学报, 2022, 42(6): 1826-1835. [6] 段明霞,马纪英.具有Beddington-DeAngelis型功能反应的离散捕食者-食饵系统的动力学行为[J]. 应用数学进展, 2023, 12(4): 1824-1837. [7] LIU M, WANG K. Global stability of a nonlinear stochastic predator-prey system with Beddington-DeAngelis functional response[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(16): 1114-1121. [8] 黄开娇, 肖飞雁. 具有Beddington-DeAngelis型功能性反应的随机捕食-被捕食系统[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 32-40. [9] SHAO Y, KONG W. A predator-prey model with Beddington-DeAngelis functional response and multiple delays in deterministic and stochastic environments[J]. Mathematics. 2022, 10(18): 3378. [10] PENG M, LIN R, CHEN Y, et al. Qualitative analysis in a Beddington-DeAngelis type predator-prey model with two time delays[J]. Symmetry, 2022, 14(12): 2535. [11] XU S H, LÜ W D, LI X F. Existence of global solutions for a prey-predator model with Beddington-DeAngelis functional response and cross-diffusion[J]. Mathematica Applicata, 2009, 22(4): 821-827. [12] LIU S Q, ZHANG J H. Coexistence and stability of predator-prey model with Beddington-DeAngelis functional response and stage structure[J]. Journal of Mathematical Analysis and Applications, 2008, 342(1): 446-460. [13] MAO X R. Stability of stochastic differential equations with Markovian switching[J]. Stochastic Processes and Their Applications, 1999, 79(1): 45-67. [14] MAO X R. Stochastic differential equations and their applications[M]. Chichester: Ellis Horwood, 1997. [15] HIGHAM D J. An algorithmic introduction to numerical simulation of stochastic differential equations[J]. SIAM Review, 2001, 43(3): 525-546. |
[1] | ZHENG Tao, ZHOU Xinran, ZHANG Long. Global Asymptotic Stability of Predator-Competition-Cooperative Hybrid Population Models of Three Species [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 64-70. |
[2] | MIAO Xinyan, ZHANG Long, LUO Yantao, PAN Lijun. Study on a Class of Alternative Competition-Cooperation Hybrid Population Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 25-31. |
[3] | HUANG Kaijiao, XIAO Feiyan. A Stochastic Predator-prey System with Beddington-DeAngelis Functional Response [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 32-40. |
[4] | HUANG Kaijiao, XIAO Feiyan. A Stochastic Predator-prey System with Lévy Jumps [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(2): 66-72. |
[5] | HAN Cai-hong, LI Lue, HUANG Rong-li. Dynamics of the Difference Equation xn+1=pn+xnxn-1 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(1): 44-47. |
|