Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (4): 74-83.doi: 10.16088/j.issn.1001-6600.2022083101

Previous Articles     Next Articles

Research on Identification of Lightning Overvoltage in Transmission Line by Improved Residual Network

JIANG Yibo, LIU Huijia*, WU Tian   

  1. College of Electrical Engineering and New Energy, China Three Gorges University, Yichang Hubei 443002, China
  • Received:2022-08-31 Revised:2022-11-06 Online:2023-07-25 Published:2023-09-06

Abstract: To further improve the accuracy of over-voltage type identification during the operation and maintenance of high-voltage transmission lines, this paper proposes an improved Residual Network (ResNet) method for lightning over-voltage identification of transmission lines. The improvement of the traditional ResNet-50 network includes the following three aspects. Firstly, the 7×7 convolution kernel is replaced by three 3 × 3 convolution kernels to improve the feature extraction ability of the network. Secondly, the ReLU activation function of the traditional ResNet-50 network is replaced by the ReLU-Softplus activation function to improve the convergence speed of the network. Then, adjust the ResNet-50 network structure to enhance the role of batch standardization. Finally, a lightning overvoltage identification model of transmission lines is constructed by combining transfer learning and improved residual network. The experimental results show that the improved residual network converges in the 70th step and the recognition accuracy is 97.25%. The recognition accuracy and convergence speed are better than other models.

Key words: lightning overvoltage, deep learning, transfer learning, residual network, ResNet-50 network

CLC Number:  TM863; TP183
[1] 朱宽军,徐鸿.考虑风速时空分布特性的高压输电塔-线体系风致响应分析研究[J].中国电机工程学报,2019,39(8):2348-2356. DOI: 10.13334/j.0258-8013.pcsee.190447.
[2] ZHANG Q, CHEN W Y. Modeling China’s interprovincial electricity transmission under low carbon transition[J]. Applied Energy, 2020, 279: 115571. DOI: 10.1016/j.apenergy.2020.115571.
[3] 司马文霞, 杨庆, 李永福, 等. 输电线路雷电绕击评估方法分析及展望[J].高电压技术,2015,41(8):2500-2513. DOI: 10.13336/j.1003-6520.hve.2015.08.004.
[4] 胡京, 张敦晶, 周龙武, 等. 考虑雷击过电压分布特性的特高压直流线路避雷器装设策略研究[J].电瓷避雷器,2022(4):177-184. DOI: 10.16188/j.isa.1003-8337.2022.04.022.
[5] 肖宏峰, 罗日成, 黄军, 等. 基于多重雷击的超高压输电线路雷过电压分析[J].高压电器,2022,58(8):245-251. DOI: 10.13296/j.1001-1609.hva.2022.08.030.
[6] 廖民传, 蔡汉生, 贾磊, 等. 基于雷击特性的配网避雷器可靠性与经济性研究[J].南方电网技术,2017,11(6):22-28. DOI: 10.13648/j.cnki.issn1674-0629.2017.06.004.
[7] 缪希仁, 林瑞聪. 基于关联维数与极端学习机的高压输电线路雷击过电压故障识别[J].高电压技术,2016,42(5):1519-1526. DOI: 10.13336/j.1003-6520.hve.20160412032.
[8] ASMAN S H, ABIDIN A F, YUSOH M A T M, et al. Identification of transient overvoltage using discrete wavelet transform with minimised border distortion effect and support vector machine[J]. Results in Engineering, 2022, 13: 100311. DOI: 10.1016/j.rineng.2021.100311.
[9] WANG J H, HUANG Z, LENG Y, et al. Identification technology of substation lightning overvoltage based on wavelet transform research and application[C]//2020 5th Asia Conference on Power and Electrical Engineering (ACPEE). Piscataway, NJ: IEEE, 2020: 1746-1750. DOI: 10.1109/ACPEE48638.2020.9136291.
[10] 杜林, 戴斌, 司马文霞, 等. 架空输电线路雷电过电压识别[J].高电压技术,2010,36(3):590-597. DOI: 10.13336/j.1003-6520.hve.2010.03.018.
[11] YANG J P, YANG S B, SONG K J, et al. Research on overvoltage identification method of EMUs high voltage electrical system based on deep learning[C]//2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). Piscataway, NJ: IEEE, 2021: 1985-1990. DOI: 10.1109/IMCEC51613.2021.9482387.
[12] GUO X F, ZHAO Q N, ZHENG D, et al. A short-term load forecasting model of multi-scale CNN-LSTM hybrid neural network considering the real-time electricity price[J]. Energy Reports, 2020, 6(Supplement 9): 1046-1053. DOI: 10.1016/j.egyr.2020.11.078.
[13] 韩欣月, 邓长征, 付添, 等. 基于MWOA-Elman神经网络的接地网瞬变电磁缺陷识别[J/OL].广西师范大学学报(自然科学版):1-13[2022-10-16].https://kns.cnki.net/kcms/detail/detail.aspx?FileName=GXSF20220916000&DbName=CA PJ2022. DOI: 10.16088/j.issn.1001-6600.2022061901.
[14] 马新娜, 赵猛, 祁琳. 基于卷积脉冲神经网络的故障诊断方法研究[J].广西师范大学学报(自然科学版),2022,40(3):112-120. DOI: 10.16088/j.issn.1001-6600.2021070808.
[15] JAWAD M, NADEEM M S A, SHIM S O, et al. Machine learning based cost effective electricity load forecasting model using correlated meteorological parameters[J]. IEEE Access, 2020, 8: 146847-146864. DOI: 10.1109/ACCESS.2020.3014086.
[16] 龙干, 黄媚, 方力谦, 等. 基于改进多元宇宙算法优化ELM的短期电力负荷预测[J].电力系统保护与控制,2022,50(19):99-106. DOI: 10.19783/j.cnki.pspc.211708.
[17] GANAIE M A, HU M H, MALIK A K, et al. Ensemble deep learning: a review[J]. Engineering Applications of Artificial Intelligence, 2022, 115: 105151. DOI: 10.1016/j.engappai.2022.105151.
[18] 张明宇, 赵猛, 蔡夫鸿, 等. 基于深度学习的波浪能发电功率预测[J].广西师范大学学报(自然科学版),2020,38(3):25-32. DOI: 10.16088/j.issn.1001-6600.2020.03.004.
[19] LAWRENCE S, GILES C L, TSOI A C, et al. Face recognition: a convolutional neural-network approach[J]. IEEE Transactions on Neural Networks, 1997, 8(1): 98-113. DOI: 10.1109/72.554195.
[20] 蔡靖, 杜佳辰, 王庆, 等. 基于VGG16网络的人脸情绪识别[J].电子技术应用,2022,48(1):67-70,75. DOI: 10.16157/j.issn.0258-7998.211516.
[21] 赵运祥. 基于特征融合与深度神经网络的心电图分类方法研究[D].济南:齐鲁工业大学,2021. DOI: 10.27278/d.cnki.gsdqc.2021.000008.
[22] 石琪. 基于卷积神经网络图像分类优化算法的研究与验证[D].北京:北京交通大学,2017.
[23] SALIH T A, ALI A J, AHMED M N. Deep learning convolution neural network to detect and classify tomato plant leaf diseases[J]. Open Access Library Journal, 2020, 7(5): e6296. DOI: 10.4236/oalib.1106296.
[24] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2014-09-04)[2022-10-16]. https://doi.org/10.48550/arXiv.1409.1556. DOI: 10.48550/arXiv.1409.1556.
[25] 陈铿. 基于时频分析与深度学习的交流输电线路雷击波形识别研究[D].广州:华南理工大学,2020.
[1] YANG Shuozhen, ZHANG Long, WANG Jianhua, ZHANG Hengyuan. Review of Sound Event Detection [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 1-18.
[2] WANG Luna, DU Hongbo, ZHU Lijun. Stacked Capsule Autoencoders Optimization Algorithm Based on Manifold Regularization [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 76-85.
[3] NIU Xuede, GAO Bingpeng, REN Rongrong, XU Mingming. Crop Pestsand Diseases Identification and Android Application Based on Lightweight CNN [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(6): 59-68.
[4] TIAN Sheng, SONG Lin. Traffic Sign Recognition Based on CNN and Bagging Integration [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 35-46.
[5] WAN Liming, ZHANG Xiaoqian, LIU Zhigui, SONG Lin, ZHOU Ying, LI Li. CT Image Segmentation of UNet Pulmonary Nodules Based on Efficient Channel Attention [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 66-75.
[6] ZHANG Ping, XU Qiaozhi. Segmentation of Lung Nodules Based on Multi-receptive Field and Grouping Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 76-87.
[7] LI Yongjie, ZHOU Guihong, LIU Bo. Fusion Algorithm of Face Detection and Head Pose Estimation Based on YOLOv3 Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 95-103.
[8] WU Jun, OUYANG Aijia, ZHANG Lin. Phosphorylation Site Prediction Model Based on Multi-head Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 161-171.
[9] YAN Longchuan, LI Yan, SONG Hu, ZOU Haodong, WANG Lijun. Web Traffic Prediction Based on Prophet-DeepAR [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 172-184.
[10] LU Kaifeng, YANG Yilong, LI Zhi. A Web Service Classification Method Using BERT and DPCNN [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 87-98.
[11] WU Lingyu, LAN Yang, XIA Haiying. Retinal Image Registration Using Convolutional Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 122-133.
[12] CHEN Wenkang, LU Shenglian, LIU Binghao, LI Guo, LIU Xiaoyu, CHEN Ming. Real-time Citrus Recognition under Orchard Environment by Improved YOLOv4 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 134-146.
[13] YANG Zhou, FAN Yixing, ZHU Xiaofei, GUO Jiafeng, WANG Yue. Survey on Modeling Factors of Neural Information Retrieval Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 1-12.
[14] DENG Wenxuan, YANG Hang, JIN Ting. A Dimensionality-reduction Method Based on Attention Mechanismon Image Classification [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 32-40.
[15] XUE Tao, QIU Senhui, LU Hao, QIN Xingsheng. Exchange Rate Prediction Based on Empirical Mode Decomposition and Multi-branch LSTM Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 41-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XU Jiu-cheng, LI Xiao-yan, LI Shuang-qun, ZHANG Ling-jun. Feature Images Retrieval Method of Tolerance Granular-basedMulti-level Texture[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 186 -187 .
[2] BAI Defa, XU Xin, WANG Guochang. Review of Generalized Linear Models and Classification for Functional Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 15 -29 .
[3] ZENG Qingfan, QIN Yongsong, LI Yufang. Empirical Likelihood Inference for a Class of Spatial Panel Data Models[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 30 -42 .
[4] ZHANG Xilong, HAN Meng, CHEN Zhiqiang, WU Hongxin, LI Muhang. Survey of Ensemble Classification Methods for Complex Data Stream[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 1 -21 .
[5] TONG Lingchen, LI Qiang, YUE Pengpeng. Research Progress and Prospects of Karst Soil Organic Carbon Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 22 -34 .
[6] WANG Dangshu, YI Jiaan, DONG Zhen, YANG Yaqiang, DENG Xuan. Research on Bridgeless Boost PFC Converter with Ripple Suppression Unit Based on Single Cycle Control[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 47 -57 .
[7] YU Siting, PENG Jingjing, PENG Zhenyun. Rank Constraint Least Square Symmetric Semidefinite Solutions and Its Optimal Approximation of the Matrix Equation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 136 -144 .
[8] QIN Chengfu, MO Fenmei. Structure ofC3-and C4-Critical Graphs[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 145 -153 .
[9] YIN Yudong, KE Shanzhe, HUANG Jiayan, DENG Mengxiang, LIU Guanyan, CHENG Keguang. One-pot Generation of Allylated Products from Alcohols, Carboxylic Acids and Amines with 1,3-Dibromopropane by Sodium Hydride[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 154 -161 .
[10] DU Libo, LI Jinyu, ZHANG Xiao, LI Yonghong, PAN Weidong. Chemical Constituents and Biological Activity from the Bark of Toona ciliata var. pubescens[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 162 -172 .