Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (4): 61-73.doi: 10.16088/j.issn.1001-6600.2022103001
Previous Articles Next Articles
WANG Shanshan1,2*, HE Jiawen1,2, WU Ni1,2, ZHU Wei1,2, LAN Xin1,2
[1] 粟世玮,郝翊彤,宋玉娇,等.含风电-氢能-电转气的园区综合能源系统优化调度[J].广西师范大学学报(自然科学版),2023,41(1):48-57. DOI: 10.16088/j.issn.1001-6600.2022030306. [2] 杨茂, 代博祉, 刘蕾. 风电功率概率预测研究综述[J].东北电力大学学报,2020,40(2):1-6. DOI: 10.19718/j.issn.1005-2992.2020-02-0001-06. [3] 狄飞超. 风电场短期风电功率组合预测方法研究[D].武汉:湖北工业大学,2021. DOI: 10.27131/d.cnki.ghugc.2021.000303. [4] WANG Y Y, SHEN R J, MA Y H, et al. Research on ultra-short term forecasting technology of wind power output based on wake model[J]. Journal of Physics: Conference Series, 2022, 2166: 012401. DOI: 10.1088/1742-6596/2166/1/012041. [5] 朱恩文, 朱安麒, 王洁丹, 等. 基于EEMD-GA-BP模型的风电功率短期预测研究[J].广西师范大学学报(自然科学版),2022,40(1):166-174. DOI: 10.16088/j.issn.1001-6600.2021060912. [6] 张明宇, 赵猛, 蔡夫鸿, 等. 基于深度学习的波浪能发电功率预测[J].广西师范大学学报(自然科学版),2020,38(3):25-32. DOI: 10.16088/j.issn.1001-6600.2020.03.004. [7] 李卓, 叶林, 戴斌华, 等. 基于IDSCNN-AM-LSTM组合神经网络超短期风电功率预测方法[J].高电压技术,2022,48(6):2117-2127. DOI: 10.13336/j.1003-6520.hve.20210557. [8] 周小麟, 童晓阳. 基于CEEMD-SBO-LSSVR的超短期风电功率组合预测[J].电网技术,2021,45(3):855-864. DOI: 10.13335/j.1000-3673.pst.2020.0584. [9] LI L L,ZHAO X,TSENG M L,et al. Short-term wind power forecasting based on support vector machine with improved dragonfly algorithm[J]. Journal of Cleaner Production, 2020, 242: 118447. DOI: 10.1016/j.jclepro.2019.118447. [10] LI L L, LIU Z F, TSENG M L, et al. Using enhanced crow search algorithm optimization-extreme learning machine model to forecast short-term wind power[J]. Expert Systems with Applications, 2021, 184: 115579. DOI: 10.1016/j.eswa.2021.115579. [11] DUAN J D, WANG P, MA W T, et al. A novel hybrid model based on nonlinear weighted combination for short-term wind power forecasting[J]. International Journal of Electrical Power & Energy Systems, 2022, 134: 107452. DOI: 10.1016/j.ijepes.2021.107452. [12] GUOH T, PAN L, WANG J, et al. Short-term wind power prediction method based on TCN-GRU combined model[C]//2021 IEEE Sustainable Power and Energy Conference (iSPEC). Piscataway, NJ: IEEE, 2021: 3764-3769. DOI: 10.1109/iSPEC53008.2021.9735991. [13] 杨迪, 方扬鑫, 周彦. 基于MEB和SVM方法的新类别分类研究[J].广西师范大学学报(自然科学版),2022,40(1):57-67. DOI: 10.16088/j.issn.1001-6600.2021060913. [14] 白钰, 彭珍瑞. 基于自适应惯性权重的樽海鞘群算法[J].控制与决策,2020,37(1):237-246. DOI: 10.13195/j.kzyjc.2020.0454. [15] 贾树晋, 杜斌. Rosenbrock搜索与动态惯性权重粒子群混合优化算法[J].控制与决策,2011,26(7):1060-1064. DOI: 10.13195/j.cd.2011.07.102.jiashj.012. [16] 吴定海, 张培林, 李胜, 等. 基于混沌变异的自适应双粒子群优化[J].控制与决策,2011,26(7):1083-1086,1095. DOI: 10.13195/j.cd.2011.07.125.wudh.026. [17] 钱晓宇, 方伟. 基于局部搜索的反向学习竞争粒子群优化算法[J].控制与决策,2021,36(4):779-789. DOI: 10.13195/j.kzyjc.2019.1150. [18] 郑丽霞, 林芳, 杨善朝. 学科领域高被引与高下载论文的灰色关联分析:以概率论与数理统计学科为例[J].广西师范大学学报(自然科学版),2018,36(4):76-83. DOI: 10.16088/j.issn.1001-6600.2018.04.010. |
[1] | DING Xiao-jian, DING Ran. Battle Scheme Evaluation Index Selection Based on SVR-RFE [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(4): 43-48. |
|