Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (4): 61-73.doi: 10.16088/j.issn.1001-6600.2022103001

Previous Articles     Next Articles

Combined Model for Wind Power Prediction Based on GRA-ISSA-SVR-EC

WANG Shanshan1,2*, HE Jiawen1,2, WU Ni1,2, ZHU Wei1,2, LAN Xin1,2   

  1. 1. School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan Hubei 430068, China;
    2. Hubei Key Laboratory for High-efficiency Utilization of Solar Energy and Operation Control of Energy Storage System (Hubei University of Technology), Wuhan Hubei 430068, China
  • Received:2022-10-30 Revised:2022-12-02 Online:2023-07-25 Published:2023-09-06

Abstract: Aiming at the nonlinear characteristics of wind power, a combined prediction method for wind power is proposed, which combines gray relational analysis (GRA), improves sparrow algorithm (ISSA), support vector regression (SVR) and error correction model (EC). GRA is used to select the influential factors with a large degree of correlation with wind power as the input of the model. Adaptive weight factor and Levy flight strategy are introduced to improve the performance of traditional SSA, and ISSA-SVR model is established to obtain the initial predicted value. The error correction model is established to get the predicted error value. Finally, the initial predicted error value and the predicted error value are combined with the adder to get the final result. The simulation results show that the average determination coefficient of the model is 0.999 6 and 0.998 5, the average absolute error is 0.226 6 kW and 0.014 6 MW, and the root mean square error is 0.277 7 kW and 0.021 3 MW, respectively, when predicting the wind power of two wind farms. Compared with other traditional models, the prediction accuracy is higher.

Key words: wind power prediction, grey relation analysis, improved sparrow search algorithm, support vector regression, error-corrected model

CLC Number:  TM614; TP18
[1] 粟世玮,郝翊彤,宋玉娇,等.含风电-氢能-电转气的园区综合能源系统优化调度[J].广西师范大学学报(自然科学版),2023,41(1):48-57. DOI: 10.16088/j.issn.1001-6600.2022030306.
[2] 杨茂, 代博祉, 刘蕾. 风电功率概率预测研究综述[J].东北电力大学学报,2020,40(2):1-6. DOI: 10.19718/j.issn.1005-2992.2020-02-0001-06.
[3] 狄飞超. 风电场短期风电功率组合预测方法研究[D].武汉:湖北工业大学,2021. DOI: 10.27131/d.cnki.ghugc.2021.000303.
[4] WANG Y Y, SHEN R J, MA Y H, et al. Research on ultra-short term forecasting technology of wind power output based on wake model[J]. Journal of Physics: Conference Series, 2022, 2166: 012401. DOI: 10.1088/1742-6596/2166/1/012041.
[5] 朱恩文, 朱安麒, 王洁丹, 等. 基于EEMD-GA-BP模型的风电功率短期预测研究[J].广西师范大学学报(自然科学版),2022,40(1):166-174. DOI: 10.16088/j.issn.1001-6600.2021060912.
[6] 张明宇, 赵猛, 蔡夫鸿, 等. 基于深度学习的波浪能发电功率预测[J].广西师范大学学报(自然科学版),2020,38(3):25-32. DOI: 10.16088/j.issn.1001-6600.2020.03.004.
[7] 李卓, 叶林, 戴斌华, 等. 基于IDSCNN-AM-LSTM组合神经网络超短期风电功率预测方法[J].高电压技术,2022,48(6):2117-2127. DOI: 10.13336/j.1003-6520.hve.20210557.
[8] 周小麟, 童晓阳. 基于CEEMD-SBO-LSSVR的超短期风电功率组合预测[J].电网技术,2021,45(3):855-864. DOI: 10.13335/j.1000-3673.pst.2020.0584.
[9] LI L L,ZHAO X,TSENG M L,et al. Short-term wind power forecasting based on support vector machine with improved dragonfly algorithm[J]. Journal of Cleaner Production, 2020, 242: 118447. DOI: 10.1016/j.jclepro.2019.118447.
[10] LI L L, LIU Z F, TSENG M L, et al. Using enhanced crow search algorithm optimization-extreme learning machine model to forecast short-term wind power[J]. Expert Systems with Applications, 2021, 184: 115579. DOI: 10.1016/j.eswa.2021.115579.
[11] DUAN J D, WANG P, MA W T, et al. A novel hybrid model based on nonlinear weighted combination for short-term wind power forecasting[J]. International Journal of Electrical Power & Energy Systems, 2022, 134: 107452. DOI: 10.1016/j.ijepes.2021.107452.
[12] GUOH T, PAN L, WANG J, et al. Short-term wind power prediction method based on TCN-GRU combined model[C]//2021 IEEE Sustainable Power and Energy Conference (iSPEC). Piscataway, NJ: IEEE, 2021: 3764-3769. DOI: 10.1109/iSPEC53008.2021.9735991.
[13] 杨迪, 方扬鑫, 周彦. 基于MEB和SVM方法的新类别分类研究[J].广西师范大学学报(自然科学版),2022,40(1):57-67. DOI: 10.16088/j.issn.1001-6600.2021060913.
[14] 白钰, 彭珍瑞. 基于自适应惯性权重的樽海鞘群算法[J].控制与决策,2020,37(1):237-246. DOI: 10.13195/j.kzyjc.2020.0454.
[15] 贾树晋, 杜斌. Rosenbrock搜索与动态惯性权重粒子群混合优化算法[J].控制与决策,2011,26(7):1060-1064. DOI: 10.13195/j.cd.2011.07.102.jiashj.012.
[16] 吴定海, 张培林, 李胜, 等. 基于混沌变异的自适应双粒子群优化[J].控制与决策,2011,26(7):1083-1086,1095. DOI: 10.13195/j.cd.2011.07.125.wudh.026.
[17] 钱晓宇, 方伟. 基于局部搜索的反向学习竞争粒子群优化算法[J].控制与决策,2021,36(4):779-789. DOI: 10.13195/j.kzyjc.2019.1150.
[18] 郑丽霞, 林芳, 杨善朝. 学科领域高被引与高下载论文的灰色关联分析:以概率论与数理统计学科为例[J].广西师范大学学报(自然科学版),2018,36(4):76-83. DOI: 10.16088/j.issn.1001-6600.2018.04.010.
[1] DING Xiao-jian, DING Ran. Battle Scheme Evaluation Index Selection Based on SVR-RFE [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(4): 43-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XU Jiu-cheng, LI Xiao-yan, LI Shuang-qun, ZHANG Ling-jun. Feature Images Retrieval Method of Tolerance Granular-basedMulti-level Texture[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 186 -187 .
[2] BAI Defa, XU Xin, WANG Guochang. Review of Generalized Linear Models and Classification for Functional Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 15 -29 .
[3] ZENG Qingfan, QIN Yongsong, LI Yufang. Empirical Likelihood Inference for a Class of Spatial Panel Data Models[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 30 -42 .
[4] ZHANG Xilong, HAN Meng, CHEN Zhiqiang, WU Hongxin, LI Muhang. Survey of Ensemble Classification Methods for Complex Data Stream[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 1 -21 .
[5] TONG Lingchen, LI Qiang, YUE Pengpeng. Research Progress and Prospects of Karst Soil Organic Carbon Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 22 -34 .
[6] WANG Dangshu, YI Jiaan, DONG Zhen, YANG Yaqiang, DENG Xuan. Research on Bridgeless Boost PFC Converter with Ripple Suppression Unit Based on Single Cycle Control[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 47 -57 .
[7] YU Siting, PENG Jingjing, PENG Zhenyun. Rank Constraint Least Square Symmetric Semidefinite Solutions and Its Optimal Approximation of the Matrix Equation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 136 -144 .
[8] QIN Chengfu, MO Fenmei. Structure ofC3-and C4-Critical Graphs[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 145 -153 .
[9] YIN Yudong, KE Shanzhe, HUANG Jiayan, DENG Mengxiang, LIU Guanyan, CHENG Keguang. One-pot Generation of Allylated Products from Alcohols, Carboxylic Acids and Amines with 1,3-Dibromopropane by Sodium Hydride[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 154 -161 .
[10] DU Libo, LI Jinyu, ZHANG Xiao, LI Yonghong, PAN Weidong. Chemical Constituents and Biological Activity from the Bark of Toona ciliata var. pubescens[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 162 -172 .