Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (4): 231-242.doi: 10.16088/j.issn.1001-6600.2022102403

Previous Articles    

Passivation Effect of Soil Conditioner on Soil Lead and Cadmium under Different Water Conditions

WANG Linqing1,2,3, YAN Tao4, CHEN Yongjian4, LI Furong2*, WANG Xu2, LI Wenying3, DU Ruiying2, YANG Xiuli2   

  1. 1. College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou Guangdong 510225, China;
    2. Institute of Quality Standard and Monitoring Technology for Agro-products, Guangdong Academy of Agricultural Sciences, Guangzhou Guangdong 501640, China;
    3. Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou Guangdong 510640, China;
    4. Guangdong Agricultural Monitoring Technology Co., Ltd., Guangzhou Guangdong 510640, China
  • Received:2022-10-24 Revised:2022-12-07 Online:2023-07-25 Published:2023-09-06

Abstract: To ameliorate heavy metal pollution and improve safe utilization rate of farmland by combining agricultural measures and soil conditioners, this research explored the effects of soil conditioners (biochar and pectin) on soil physical and chemical properties and the passivation of heavy metals Pb and Cd under different water conditions (75% soil saturation moisture capacity and waterlogged condition). The typical vegetable soil in South China was chosen as the research subject with a soil culture experiment for 30 and 60 days. The results showed that the pH values were higher and the available heavy metal contents were lower under waterlogged condition than under 75% soil saturation moisture capacity. The application of biochar and pectin could increase soil pH value and organic matter contents under both the two water conditions, while the effects on soil alkali hydrolyzable nitrogen, available phosphorus and available potassium contents were different due to different water conditions. Under 75% soil saturation moisture capacity, the application of biochar and pectin could significantly reduce the available Cd contents in soil, which were lower with the application amount of the two conditioners increasing. However, under the waterlogged condition, the effect of pectin on soil available lead content with different biochar application amounts was not consistent, but the passivation effect of soil culture for 60 days was better than that for 30 days. The multivariate analysis of variance indicated that, in general, the types and formulations of soil conditioners had greater impact on the soil physical and chemical properties and the available heavy metal contents than other factors, such as soil incubation time and water conditions. Therefore, for the increasing shortage of cultivated land resources and the more urgent need to improve the quality of cultivated land soil, it is an effective way to reduce the heavy metal availability in the moderately contaminated farmland soil and realize the full and safe utilization of cultivated land by appropriate water management, adjustment of different cultivation modes and appropriate soil conditioners.

Key words: heavy metal, soil conditioner, water management, biochar, passivation effect

CLC Number:  X53; Q89
[1] WU J H, SONG Q M, ZHOU J Y, et al. Cadmium threshold for acidic and multi-metal contaminated soil according to Oryza sativa I. cadmium accumulation: influential factors and prediction model[J]. Ecotoxicology and Environmental Safety, 2021, 208: 111420. DOI: 10.1016/j.ecoenv.2020.111420.
[2] HAN R, DAI H P, SKUZA L, et al. Comparative study on different organic acids for promoting Solanum nigrum L. hyperaccumulation of Cd and Pb from the contaminated soil[J]. Chemosphere, 2021, 278: 130446. DOI: 10.1016/J.chemosphere.2021.130446.
[3] 彭丽梅, 赵理, 周悟, 等. 广州市从化区耕地土壤重金属风险评价[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 118-129. DOI: 10.16088/j.issn.1001-6600.2020.05.015.
[4] LI F R, WEN D, WANG F H, et al. Derivation of Soil Pb/Cd/As thresholds for safety of vegetable planting: a case study for pakchoi in Guangdong Province, China[J]. Journal of Integrative Agriculture, 2019, 18(1): 179-189. DOI: 10.1016/S2095-3119(18)61975-6.
[5] WEI L, HUANG Y F, HUANG L X, et al. Combined biochar and soda residues increases maize yields and decreases grain Cd/Pb in a highly Cd/Pb-polluted acid Udults soil[J]. Agriculture, Ecosystems & Environment, 2021, 306: 107198. DOI: 10.1016/j.agee.2020.107198.
[6] NAWAB J, KHAN S, AAMIR M, et al. Organic amendments impact the availability of heavy metal (loid)s in mine-impacted soil and their phytoremediation by Penisitum americanum and Sorghum bicolor[J]. Environmental Science and Pollution Research, 2016, 23(3): 2381-2390. DOI: 10.1007/s11356-015-5458-7.
[7] 周利军, 武琳, 林小兵, 等. 土壤调理剂对镉污染稻田修复效果[J]. 环境科学, 2019, 40(11): 5098-5106. DOI: 10.13227/j.hjkx.201905053.
[8] BABLA M, KATWAL U, YONG M T, et al. Value-added products as soil conditioners for sustainable agriculture[J]. Resources, Conservation and Recycling, 2022, 178: 106079. DOI: 10.1016/j.resconrec.2021.106079.
[9] HUI D F. Effects of biochar application on soil properties, plant biomass production, and soil greenhouse gas emissions: a mini-review[J]. Agricultural Sciences, 2021, 12(3): 213-236. DOI: 10.4236/as.2021.123014.
[10] 梁佳怡, 王泳森, 段敏, 等. 生物质炭对土壤有效态镉及植物镉吸收影响的整合分析[J]. 广西师范大学学报(自然科学版), 2021, 39(6): 1-21. DOI: 10.16088/j.issn.1001-6600.2021030502.
[11] HANNAN F, ISLAM F, HUANG Q, et al. Interactive effects of biochar and mussel shell activated concoctions on immobilization of nickel and their amelioration on the growth of rapeseed in contaminated aged soil[J]. Chemosphere, 2021, 282: 130897. DOI: 10.1016/j.chemosphere.2021.130897.
[12] MATA Y N, BLÁZQUEZ M L, BALLESTER A, et al. Sugar-beet pulp pectin gels as biosorbent for heavy metals: preparation and determination of biosorption and desorption characteristics[J]. Chemical Engineering Journal, 2009, 150(2/3): 289-301. DOI: 10.1016/j.cej.2009.01.001.
[13] WANG R H, ZHU X F, QIAN W, et al. Pectin adsorption on amorphous Fe/Al hydroxides and its effect on surface charge properties and Cu(Ⅱ) adsorption[J]. Journal of Soils and Sediments, 2017, 17(10): 2481-2489. DOI: 10.1007/s11368-017-1702-8.
[14] GUO M X, TONG H, CAI D Q, et al. Effectof wetting-drying cycles on the Cu bioavailability in the paddy soil amended with CuO nanoparticles[J]. Journal of Hazardous Materials, 2022, 436: 129119. DOI: 10.1016/j.jhazmat.2022.129119.
[15] 李富荣, 李敏, 朱娜, 等. 水作和旱作施用改良剂对蕹菜-土壤系统中铅镉生物有效性的影响差异[J]. 农业环境科学学报, 2017, 36(8): 1477-1483. DOI: 10.11654/jaes.2017-0021.
[16] CANG L, XING J F, LIU C, et al. Effects of different water management strategies on the stability of cadmium and copper immobilization by biochar in rice-wheat rotation system[J]. Ecotoxicology and Environmental Safety, 2020, 202: 110887. DOI: 10.1016/j.ecoenv.2020.110887.
[17] 赵洁, 李富荣, 文典, 等. 不同作物栽培模式下施用改良剂对重金属铅、镉的影响[J]. 南方农业学报, 2016, 47(7): 1110-1116. DOI: 10.3969/j.issn.2095-1191.2016.07.1110.
[18] 刘源, 崔二苹, 李中阳, 等. 养殖废水灌溉下施用生物质炭和果胶对土壤养分和重金属迁移的影响[J]. 植物营养与肥料学报, 2018, 24(2): 424-434. DOI: 10.11674/zwyf.17250.
[19] DUQUE-ACEVEDO M, BELMONTE-UREÑA L J, CORTÉS-GARCÍA F J, et al. Agricultural waste: review of the evolution, approaches and perspectives on alternative uses[J]. Global Ecology and Conservation, 2020, 22: e00902. DOI: 10.1016/j.gecco.2020.e00902.
[20] 王艳红, 李盟军, 唐明灯, 等. 水作和旱作对叶菜吸收镉的影响差异研究[J]. 生态环境学报, 2012, 21(4): 770-774. DOI: 10.16258/j.cnki.1674-5906.2012.04.007.
[21] LI F R, WANG X, WANG F H, et al. Arisk-based approach for the safety analysis of eight trace elements in chinese flowering cabbage(Brassica parachinensis L.) in China[J]. Journal of the Science of Food and Agriculture, 2021, 101(13): 5583-5590. DOI: 10.1002/jsfa.11209.
[22] REN J, ZHANG Z, WANG M, et al. Phosphate-induced differences in stabilization efficiency for soils contaminated with Lead, Zinc, and Cadmium[J]. Frontiers of Environmental Science & Engineering, 2018, 12(2): 1-9. DOI: 10.1001/s11783-018-1006-2.
[23] REES F, SIMONNOT M O, MOREL J L. Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase[J]. European Journal of Soil Science, 2014, 65(1):149-161. DOI: 10.1111/ejss.12107.
[24] YUAN J H, XU R K. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic ultisol[J]. Soil Use and Management, 2011, 27(1): 110-115. DOI: 10.1111/j.1475-2743.2010.00317.x.
[25] LI J, YANG Z L, DING T, et al. The role of surface functional groups of pectin and pectin-based materials on the adsorption of heavy metal ions and dyes[J]. Carbohydrate Polymers, 2022, 276: 118789. DOI: 10.1016/j.carbpol.2021.118789.
[26] SUN L N, CHEN S, CHAO L, et al. Effects of flooding on changes in Eh, pH and speciation of cadmium and lead in contaminated soil[J]. Bulletin of Environmental Contamination and Toxicology, 2007, 79(5): 514-518. DOI: 10.1007/s00128-007-9274-8.
[27] 朱丹妹, 刘岩, 张丽, 等. 不同类型土壤淹水对pH、Eh、Fe及有效态Cd含量的影响[J]. 农业环境科学学报, 2017, 36(8): 1508-1517. DOI: 10.11654/jaes.2016-1491.
[28] 汤家庆, 张绪, 黄国勇, 等. 水分条件对生物炭钝化水稻土铅镉复合污染的影响[J]. 环境科学, 2021, 42(3):1185-1190. DOI: 10.13227/j.hjkx.202010127.
[29] 罗小丽, 鞠琳, 姚爱军, 等. 水分管理、铁硅材料与生物炭对不同水稻品种吸收镉的影响及其机制[J]. 农业环境科学学报, 2019, 38(7): 1506-1513. DOI: 10.11654/jaes.2018-1319.
[30] CONNELL W E, PATRICK W H, Jr. Sulfate reduction in soil: effects of redox potential and pH[J]. Science, 1968, 159(3810): 86-87. DOI: 10.1126/science.159.3810.86.
[31] 刘娟, 张乃明, 袁启慧. 不同钝化剂对铅镉复合污染土壤钝化效果及影响因素研究[J].生态环境学报, 2021, 30(8): 1732-1741. DOI: 10.16258/j.cnki.1674-5906.2021.08.020.
[32] 李衍亮, 黄玉芬, 魏岚, 等. 施用生物炭对重金属污染农田土壤改良及玉米生长的影响[J]. 农业环境科学学报, 2017, 36(11): 2233-2239. DOI: 10.11654/jaes.2017-0522.
[33] QIU Z, TANG J W, CHEN J H, et al. Remediation of cadmium-contaminated soil with biochar simultaneously improves biochar's recalcitrance[J]. Environmental Pollution, 2020, 256: 113436. DOI: 10.1016/j.envpol.2019.113436.
[34] ALABOUDI K A, AHMED B, BRODIE G. Effect of biochar on Pb, Cd and Cr availability and maize growth in artificial contaminated soil[J]. Annals of Agricultural Sciences, 2019, 64(1): 95-102. DOI: 10.1016/j.aoas.2019.04.002.
[35] ABBAS T, RIZWAN M, ALI S, et al. Effect of biochar on cadmium bioavailability and uptake in wheat (Triticum aestivum L.) grown in a soil with aged contamination[J]. Ecotoxicology and Environmental Safety, 2017, 140: 37-47. DOI: 10.1016/j.ecoenv.2017.02.028.
[36] WANG R S, LIANG R H, DAI T T, et al. Pectin-based adsorbents for heavy metal ions: a review[J]. Trends in Food Science & Technology, 2019, 91: 319-329. DOI: 10.1016/j.tifs.2019.07.033.
[37] AMOS R A, MOHNEN D. Critical review of plant cell wall matrix polysaccharide glycosyltransferase activities verified by heterologous protein expression[J]. Frontiers in Plant Science, 2019, 10: 915. DOI: 10.3389/fpls.2019.00915.
[38] WANG R H, ZHU X F, QIAN W, et al. Adsorption of Cd(II) by two variable-charge soils in the presence of pectin[J]. Environmental Science and Pollution Research, 2016, 23(13): 12976-12982. DOI: 10.1007/s11356-016-6465-z.
[1] ZHAO Keyi, ZHANG Ningning, XUE Jieyi, LI Guangluan, LI Yi, YU Fangming, LIU Kehui. CiteSpace Visualization Analysis of Heavy Metal Hyperaccumulators [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(3): 191-209.
[2] DENG Hua, ZHANG Junyu, HUANG Rui, WANG Wei, HU Lening. Adsorption Capacity and Mechanism of ZnO Loading Bamboo Biochar for Cr(Ⅵ) [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 131-142.
[3] LIANG Jiayi, WANG Yongsen, DUAN Ming, LI Yi, CHEN Zhe, YU Fangming, LIU Kehui. Effects of Biochar on Soil Available Cadmium and Cadmium Uptake by Plants:A Meta Analysis [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 1-12.
[4] PENG Limei, ZHAO Li, ZHOU Wu, HU Yueming. Risk Assessment of Heavy Metals in Cultivated Land in Conghua District of Guangzhou City, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 118-129.
[5] XU Tingting, YU Qiuping, QI Peiyi, LIU Kehui, LI Yi, JIANG Yongrong, YU Fangming. Effects of Different Washing Solutions on the Desorption of Heavy Metals from a Lead-zinc Mine Soil [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 188-193.
[6] ZHENG Haixia, WANG Yue, CHEN Fen, GOU Chaoyang, ZHENG Qingrong. Pollution Characteristics and Potential Ecological Risk Assessmentof Soil Heavy Metal in the South Top of Wutai Mountain, Shanxi, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 99-107.
[7] CHEN Chunqiang, DENG Hua, CHEN Xiaomei. Assessment on Human Health Risk of Heavy Metal in the Food Crops fromThree Manganese Mine Recovery Areas in Guangxi, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(4): 127-135.
[8] CHEN Chun-qiang, DENG Hua, HUANG Fang-fang. Concentration and Speciation Analysis of Heavy Metals in Soils in Guiping Manganese Mine, Guangxi, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(4): 108-114.
[9] ZHANG Jun, LI Dao-hong, DU Dian-song. Enrichment of Heavy Metals in Diestrammena from Longjing Cave and Bailong Cave of Guizhou,China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 104-109.
[10] TANG Yu-ting, HUANG Jia-yu, WANG Wei-sheng, ZHANG Chao-lan. Effect of Low Molecular Weight Organic Acids on Cd and Zn Absorption of Rape [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(2): 127-131.
[11] DENG Hua, XU Dan-dan, LI Ming-shun, LI Jin-cheng. Comparison of Different Digestion Methods in Analyzing Heavy Metals Content in Soils [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(3): 80-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XU Jiu-cheng, LI Xiao-yan, LI Shuang-qun, ZHANG Ling-jun. Feature Images Retrieval Method of Tolerance Granular-basedMulti-level Texture[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 186 -187 .
[2] BAI Defa, XU Xin, WANG Guochang. Review of Generalized Linear Models and Classification for Functional Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 15 -29 .
[3] ZENG Qingfan, QIN Yongsong, LI Yufang. Empirical Likelihood Inference for a Class of Spatial Panel Data Models[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 30 -42 .
[4] ZHANG Xilong, HAN Meng, CHEN Zhiqiang, WU Hongxin, LI Muhang. Survey of Ensemble Classification Methods for Complex Data Stream[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 1 -21 .
[5] TONG Lingchen, LI Qiang, YUE Pengpeng. Research Progress and Prospects of Karst Soil Organic Carbon Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 22 -34 .
[6] WANG Dangshu, YI Jiaan, DONG Zhen, YANG Yaqiang, DENG Xuan. Research on Bridgeless Boost PFC Converter with Ripple Suppression Unit Based on Single Cycle Control[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 47 -57 .
[7] YU Siting, PENG Jingjing, PENG Zhenyun. Rank Constraint Least Square Symmetric Semidefinite Solutions and Its Optimal Approximation of the Matrix Equation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 136 -144 .
[8] QIN Chengfu, MO Fenmei. Structure ofC3-and C4-Critical Graphs[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 145 -153 .
[9] YIN Yudong, KE Shanzhe, HUANG Jiayan, DENG Mengxiang, LIU Guanyan, CHENG Keguang. One-pot Generation of Allylated Products from Alcohols, Carboxylic Acids and Amines with 1,3-Dibromopropane by Sodium Hydride[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 154 -161 .
[10] DU Libo, LI Jinyu, ZHANG Xiao, LI Yonghong, PAN Weidong. Chemical Constituents and Biological Activity from the Bark of Toona ciliata var. pubescens[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 162 -172 .