Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (3): 91-104.doi: 10.16088/j.issn.1001-6600.2022100805

Previous Articles     Next Articles

Ransomware Classification Based on Entropy Image Static Analysis Technology

DENG Xizhen, JIANG Ming, CEN Mingcan*, LUO Yuling   

  1. School of Electronic and Information Engineering, Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2022-10-08 Revised:2022-10-29 Online:2023-05-25 Published:2023-06-01

Abstract: With the rapid development of artificial intelligence, 5G, Internet of Things and other technologies, China has become increasingly vulnerable to attacks from outside the country in the field of cyber security. The number of ransomware attacks has increased significantly, causing huge data losses and economic losses to individuals, enterprises and countries. To effectively classify ransomware families, a ransomware classification method based on entropy image static analysis technology is proposed in this paper, which directly utilizes the entropy features extracted from ransomware binary files for classification. In addtion, a data augmentation method named Ran-GAN is proposed to solve the data imbalance problem among ransomware families. The method proposed in this paper introduces the attention mechanism into the VGG16 neural network architecture to improve the feature extraction ability of the network. Experimental results show that the proposed method achieves 97.16% accuracy and 97.12% weighted average F1-score on 14 ransomware families. Compared with the traditional visualization methods, the proposed method is obviously better than the traditional visualization methods under the four evaluation indicators. At the same time, the ransomware detection performance is significantly improved compared with other neural network methods.

Key words: ransomware, ransomware visualization, entropy features, static analysis, attention mechanism

CLC Number:  TP309
[1] BRIDGES L. The changing face of malware[J]. Network Security, 2008, 2008(1): 17-20. DOI: 10.1016/S1353-4858(08)70010-2.
[2] 腾讯研究院. 2021年勒索攻击特征与趋势研究白皮书[R]. 武汉: 腾讯研究院, 2021.
[3] NATARAJ L, KARTHIKEYAN S, JACOB G, et al. Malware images: visualization and automatic classification[C]//Proceedings of the 8th International Symposium on Visualization for Cyber Security. New York, NY: Association for Computing Machinery, 2011: 4. DOI: 10.1145/2016904.2016908.
[4] KANCHERLA K, MUKKAMALA S. Image visualization based malware detection[C]//2013 IEEE Symposium on Computational Intelligence in Cyber Security (CICS). Piscataway, NJ: IEEE, 2013: 40-44. DOI: 10.1109/CICYBS.2013.6597204.
[5] SAXE J, BERLIN K. Deep neural network based malware detection using two dimension binary program features[C]//2015 10th International Conference on Malicious and Unwanted Software (MALWARE). Piscataway, NJ: IEEE, 2015: 11-20. DOI: 10.1109/MALWARE.2015.7413680.
[6] 郭春, 陈长青, 申国伟, 等. 一种基于可视化的勒索软件分类方法[J]. 信息网络安全, 2020, 20(4): 31-39. DOI: 10.3969/j.issn.1671-1122.2020.04.004.
[7] XIAO G Q, LI J N, CHEN Y D, et al. MalFCS:an effective malware classification framework with automated feature extraction based on deep convolutional neural networks[J]. Journal of Parallel and Distributed Computing, 2020, 141: 49-58. DOI: 10.1016/j.jpdc.2020.03.012.
[8] 杨春雨, 徐洋, 张思聪, 等. 一种基于三通道图像的恶意软件分类方法[J]. 武汉大学学报(理学版), 2022, 68(1): 26-34. DOI: 10.14188/j.1671-8836.2021.2005.
[9] 王方伟, 柴国芳, 李青茹, 等. 基于参数优化元学习和困难样本挖掘的小样本恶意软件分类方法[J]. 武汉大学学报(理学版), 2022, 68(1):17-25. DOI: 10.14188/j.1671-8836.2021.2008.
[10] 陈小寒, 魏书宁, 覃正泽.基于深度学习可视化的恶意软件家族分类[J]. 计算机工程与应用, 2021, 57(22): 131-138. DOI: 10.3778/j.issn.1002-8331.2007-0291.
[11] 张英韬, 王宝会.基于图表示学习的恶意软件分类方法[J]. 新型工业化, 2021, 11(10): 91-96. DOI: 10.19335/j.cnki.2095-6649.2021.10.019.
[12] ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//2017 IEEE International Conference on Computer Vision (ICCV). Piscataway, NJ: IEEE, 2017: 2223-2232. DOI: 10.1109/ICCV.2017.244.
[13] VINAYAKUMAR R, SOMAN K P, SENTHIL VELAN K K, et al. Evaluating shallow and deep networks for ransomware detection and classification[C]//2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI). Piscataway, NJ: IEEE, 2017: 259-265. DOI: 10.1109/ICACCI.2017.8125850.
[14] 陈长青, 郭春, 崔允贺, 等. 基于API短序列的勒索软件早期检测方法[J]. 电子学报, 2021, 49(3): 586-595. DOI: 10.12263/DZXB.20200623.
[15] 汪嘉来, 张超, 戚旭衍, 等. Windows平台恶意软件智能检测综述[J]. 计算机研究与发展, 2021, 58(5): 977-994. DOI: 10.7544/issn1000-1239.2021.20200964.
[16] ZHAO S, MA X B, ZOU W, et al. DeepCG:classifying metamorphic malware through deep learning of call graphs[C]//Security and Privacy in Communication Networks. Cham: Springer Nature Switzerland AG, 2019: 171-190. DOI: 10.1007/978-3-030-37228-6_9.
[17] 杨望, 高明哲, 蒋婷. 一种基于多特征集成学习的恶意代码静态检测框架[J]. 计算机研究与发展, 2021, 58(5): 1021-1034. DOI: 10.7544/issn1000-1239.2021.20200912.
[18] ZHANG B, XIAO W T, XIAO X, et al. Ransomware classification using patch-based CNN and self-attention network on embedded n-grams of opcodes[J]. Future Generation Computer Systems, 2020, 110: 708-720. DOI: 10.1016/j.future.2019.09.025.
[19] ZHANG H Q, XIAO X, MERCALDO F, et al. Classification of ransomware families with machine learning based on n-gram of opcodes[J]. Future Generation Computer Systems, 2019, 90: 211-221. DOI: 10.1016/j.future.2018.07.052.
[20] 白金荣, 王俊峰, 赵宗渠. 基于PE静态结构特征的恶意软件检测方法[J]. 计算机科学, 2013, 40(1): 122-126. DOI: 10.3969/j.issn.1002-137X.2013.01.029.
[21] 张光华, 高天娇, 陈振国, 等. 基于N-Gram静态分析技术的恶意软件分类研究[J].计算机科学, 2022, 49(8): 336-343. DOI: 10.11896/jsjkx.210900203.
[22] CONTI G, DEAN E, SINDA M, et al. Visual reverse engineering of binary and data files[C]//Visualization for Computer Security: LNCS Volume 5210. Berlin: Springer, 2008: 1-17. DOI: 10.1007/978-3-540-85933-8_1.
[23] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10)[2022-10-08]. https://arxiv.org/abs/1409.1556v6. DOI: 10.48550/arXiv.1409.1556.
[24] WOO S Y, PARK J C, LEE J Y, et al. CBAM: convolutional block attention module[C]//Computer Vision-ECCV 2018: LNCS Volume 11211. Cham: Springer, 2018: 3-19. DOI: 10.1007/978-3-030-01234-2_1.
[25] CONTINELLA A, GUAGNELLI A, ZINGARO G, et al. ShieldFS: a self-healing, ransomware-aware filesystem[C]//Proceedings of the 32nd Annual Conference on Computer Security Applications. New York, NY: Association for Computing Machinery, 2016: 336-347. DOI: 10.1145/2991079.2991110.
[26] SGANDURRA D, MUÑOZ-GONZÁLEZ L, MOHSEN R, et al. Automated dynamic analysis of ransomware:benefits, limitations and use for detection[EB/OL]. (2016-09-10)[2022-10-08]. https://arxiv.org/abs/1609.03020. DOI: 10.48550/arXiv.1609.03020.
[27] HIRANO M, HODOTA R, KOBAYASHI R. RanSAP: an open dataset of ransomware storage access patterns for training machine learning models[J]. Forensic Science International: Digital Investigation, 2022, 40: 301314. DOI: 10.1016/j.fsidi.2021.301314.
[28] HU J, SHEN L,ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023. DOI: 10.1109/TPAMI.2019.2913372.
[29] HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. (2017-04-17)[2022-10-08]. https://arxiv.org/abs/1704.04861. DOI: 10.48550/arXiv.1704.04861.
[30] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2016: 770-778. DOI: 10.1109/cvpr.2016.90.
[31] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2015: 1-9. DOI: 10.1109/cvpr.2015.7298594.
[32] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[EB/OL]. (2021-06-03)[2022-10-08]. https://arxiv.org/abs/2010.11929. DOI: 10.48550/arXiv.2010.11929.
[1] WANG Li’e, WANG Yihui, LI Xianxian. A Multi-source Data Fusion and Privacy Protection Method of POI Recommendation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 87-101.
[2] WANG Yuhang, ZHANG Canlong, LI Zhixin, WANG Zhiwen. Image Captioning According to User’s Intention and Style [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 91-103.
[3] LI Zhengguang, CHEN Heng, LIN Hongfei. Identification of Adverse Drug Reaction on Social Media Using Bi-directional Language Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 40-48.
[4] WAN Liming, ZHANG Xiaoqian, LIU Zhigui, SONG Lin, ZHOU Ying, LI Li. CT Image Segmentation of UNet Pulmonary Nodules Based on Efficient Channel Attention [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 66-75.
[5] ZHANG Ping, XU Qiaozhi. Segmentation of Lung Nodules Based on Multi-receptive Field and Grouping Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 76-87.
[6] WU Jun, OUYANG Aijia, ZHANG Lin. Phosphorylation Site Prediction Model Based on Multi-head Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 161-171.
[7] LI Weiyong, LIU Bin, ZHANG Wei, CHEN Yunfang. An Automatic Summarization Model Based on Deep Learning for Chinese [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 51-63.
[8] WANG Jian, ZHENG Qifan, LI Chao, SHI Jing. Remote Supervision Relationship Extraction Based on Encoder and Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 53-60.
[9] WU Wenya,CHEN Yufeng,XU Jin’an,ZHANG Yujie. High-level Semantic Attention-based Convolutional Neural Networks for Chinese Relation Extraction [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 32-41.
[10] YUE Tianchi, ZHANG Shaowu, YANG Liang, LIN Hongfei, YU Kai. Stance Detection Method Based on Two-Stage Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 42-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Ru, ZHANG Bei, REN Hongrui. Spatio-temporal Dynamics Analysis and Its Affecting Factors of Cropland Loss in Xuangang Mining Area, Shanxi, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 121 -132 .
[2] HU Yucong, CHEN Xu, LUO Jialing. Network Design Model of Customized Bus in Diversified Operationof Multi-origin-destination and Multi-type Vehicle Mixed Load[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 1 -11 .
[3] WU Lei, HUANG Yun-feng, NONG Dong-xin, XU Wei-bin. New Records of Orchids from Guangxi,China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(3): 57 -59 .
[4] DU Xuesong,LIN Yong,LIANG Guokun,HUANG Yin,BIN Shiyu, CHEN Zhong,QIN Junqi,ZHAO Yi. Comparison of Low Temperature Resistant Performance between Two Tilapia[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 174 -179 .
[5] BAI Jie, GAO Haili, WANG Yongzhong, YANG Laibang, XIANG Xiaohang, LOU Xiongwei. Detection of Students’ Classroom Performance Based on Faster R-CNN and Transfer Learning with Multi-Channel Feature Fusion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 1 -11 .
[6] HU Jinming, WEI Duqu. Hybrid Projective Synchronization of Fractional-order PMSM with Different Orders[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 1 -8 .
[7] HOU Qianqian, FANG Zhigang, QIN Yu, ZHU Yiwen. Study on the Polarization of Fe4P Clusters[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 140 -146 .
[8] KONG Yayu, LU Yujie, SUN Zhongtian, XIAO Jingxian, HOU Haochen, CHEN Tingwei. Research on Graph Neural Network Recommendation Algorithms for Reinforcing Current Interest[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 151 -160 .
[9] TAN Kai, LI Yongjie, PAN Haiming, HUANG Kexin, QIU Jie, CHEN Qingfeng. Study on Multi-information Integration for Drug Target Prediction[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 91 -102 .
[10] ZHONG Hui, SONG Shuxiang, CEN Mingcan, CAI Chaobo, JIANG Pinqun, LIU Zhenyu. Differential N-path Filter Based on Sampling Calculation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 58 -67 .