Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (2): 91-102.doi: 10.16088/j.issn.1001-6600.2021072301
Previous Articles Next Articles
TAN Kai1, LI Yongjie1, PAN Haiming1, HUANG Kexin2, QIU Jie2, CHEN Qingfeng1*
CLC Number:
[1] 徐国保, 陈媛晓, 王骥. 基于图卷积网络的药物靶标关联预测算法[J]. 计算机应用, 2021, 41(5): 1522-1526. DOI: 10.11772/j.issn.1001-9081.2020081186. [2] 余冬华, 郭茂祖, 刘晓燕, 等. 药物靶标作用关系预测结果评价及查询验证[J]. 计算机研究与发展, 2019, 56(9): 1881-1888. DOI: 10.7544/issn1000-1239.2019.20180830. [3] 宫莉, 康经武. 基于化学蛋白质组学的药物靶标鉴定[J]. 色谱, 2020, 38(8): 877-879. [4] 李梢. 网络靶标: 中药方剂网络药理学研究的一个切入点[J]. 中国中药杂志, 2011, 36(15): 2017-2020. [5] PAUL S M, MYTELKA D S, DUNWIDDIE C T, et al. How to improve R&D productivity: the pharmaceutical industry's grand challenge[J]. Nature Reviews Drug Discovery, 2010, 9(3): 203-214. DOI: 10.1038/nrd3078. [6] 彭利红, 刘海燕, 任日丽, 等. 基于多标记学习预测药物-靶标相互作用[J]. 计算机工程与应用, 2017, 53(15): 260-265. [7] MORRIS G M, HUEY R, LINDSTROM W, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility[J]. Journal of Computational Chemistry, 2009, 30(16): 2785-2791. DOI: 10.1002/jcc.21256. [8] KEISER M J, ROTH B L, ARMBRUSTER B N, et al. Relating protein pharmacology by ligand chemistry[J]. Nature Biotechnology, 2007, 25(2): 197-206. DOI: 10.1038/nbt1284. [9] KLIPP E, WADE R C, KUMMER U. Biochemical network-based drug-target prediction[J]. Current opinion in biotechnology, 2010, 21(4): 511-516. DOI: 10.1016/j.copbio.2010.05.004. [10] YAMANISHI Y, ARAKI M, GUTTERIDGE A, et al. Prediction of drug-target interaction networks from the integration of chemical and genomic spaces[J]. Bioinformatics, 2008, 24(13): i232-i240. DOI: 10.1093/bioinformatics/btn162. [11] BLEAKLEY K, YAMANISHI Y. Supervised prediction of drug-target interactions using bipartite local models[J]. Bioinformatics, 2009, 25(18): 2397-2403. DOI: 10.1093/bioinformatics/btp433. [12] MEI J P, KWOH C K, YANG P, et al. Drug-target interaction prediction by learning from local information and neighbors[J]. Bioinformatics, 2013, 29(2): 238-245. DOI: 10.1093/bioinformatics/bts670. [13] VAN LAARHOVEN T, NABUURS S B, MARCHIORI E. Gaussian interaction profile kernels for predicting drug-target interaction[J]. Bioinformatics, 2011, 27(21): 3036-3043. DOI: 10.1093/bioinformatics/btr500. [14] PAHIKKALA T, AIROLA A, PIETILÄ S, et al. Toward more realistic drug-target interaction predictions[J]. Briefings in Bioinformatics, 2015, 16(2): 325-337. DOI: 10.1093/bib/bbu010. [15] HAO M, WANG Y L, BRYANT S H. Improved prediction of drug-target interactions using regularized least squares integrating with kernel fusion technique[J]. Analytica Chimica Acta, 2016, 909: 41-50. DOI: 10.1016/j.aca.2016.01.014. [16] NASCIMENTO A C A, PRUDÊNCIO R B C, COSTA I G. A multiple kernel learning algorithm for drug-target interaction prediction[J]. BMC Bioinformatics, 2016, 17: 46. DOI: 10.1186/s12859-016-0890-3. [17] LIU Y, WU M, MIAO C Y, et al. Neighborhood regularized logistic matrix factorization for drug-target interaction prediction[J]. PLOS Computational Biology, 2016, 12(2): e1004760. DOI: 10.1371/journal.pcbi.1004760. [18] GÖNEN M. Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization[J]. Bioinformatics, 2012, 28(18): 2304-2310. DOI: 10.1093/bioinformatics/bts360. [19] ZHENG X D, DING H, MAMITSUKA H, et al. Collaborative matrix factorization with multiple similarities for predicting drug-target interactions[C]// Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY: ACM Press, 2013: 1025-1033. DOI: 10.1145/2487575.2487670. [20] HAO M, BRYANT S H, WANG Y L. Predicting drug-target interactions by dual-network integrated logistic matrix factorization[J]. Scientific Reports, 2017, 7: 40376. DOI: 10.1038/srep40376. [21] MIZUTANI S, PAUWELS E, STOVEN V, et al. Relating drug-protein interaction network with drug side effects[J]. Bioinformatics, 2012, 28(18): i522-i528. DOI: 10.1093/bioinformatics/bts383. [22] LUO Y N, ZHAO X B, ZHOU J T, et al. A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information[J]. Nature Communications, 2017, 8: 537. DOI: 10.1038/s41467-017-00680-8. [23] NATARAJAN N, DHILLON I S. Inductive matrix completion for predicting gene-disease associations[J]. Bioinformatics, 2014, 30(12): i60-i68. DOI: 10.1093/bioinformatics/btu269. [24] CHEN Q F, LAI D H, LAN W, et al. ILDMSF: inferring associations between long non-coding RNA and disease based on multi-similarity fusion[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18(3): 1106-1112. DOI: 10.1109/TCBB.2019.2936476. [25] LAN W, LAI D H, CHEN Q F, et al. LDICDL: LncRNA-disease association identification based on collaborative deep learning[J/OL]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020[2021-07-23]. https://ieeexplore.ieee.org/document/9246263. DOI: 10.1109/TCBB.2020.3034910. [26] 李琳, 梁永全, 刘广明. 基于重启随机游走的图自编码器[J]. 计算机应用研究, 2021, 38(10): 3009-3013. DOI: 10.19734/j.issn.1001-3695.2021.03.0083. [27] 翟正利, 梁振明, 周炜, 等. 变分自编码器模型综述[J]. 计算机工程与应用, 2019, 55(3): 1-9. DOI: 10.3778/j.issn.1002-8331.1810-0284. [28] 郭景峰, 董慧, 张庭玮, 等. 主题关注网络的表示学习[J]. 计算机应用, 2020, 40(2): 441-447. DOI: 10.11772/j.issn.1001-9081.2019081529. [29] 王佩琪, 高原, 刘振宇, 等. 深度卷积神经网络的数据表示方法分析与实践[J]. 计算机研究与发展, 2017, 54(6): 1348-1356. DOI: 10.7544/issn1000-1239.2017.20170098. [30] 刘思, 刘海, 陈启买, 等. 基于网络表示学习与随机游走的链路预测算法[J]. 计算机应用, 2017, 37(8): 2234-2239. DOI: 10.11772/j.issn.1001-9081.2017.08.2234. [31] WAN F P, HONG L X, XIAO A, et al. NeoDTI: neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions[J]. Bioinformatics, 2019, 35(1): 104-111. DOI: 10.1093/bioinformatics/bty543. [32] GILMER J, SCHOENHOLZ S S, RILEY P F, et al. Neural message passing for quantum chemistry[C]// Proceedings of the 34th International Conference on Machine Learning: Volume 70. Sydney: PMLR, 2017: 1263-1272. [33] ROSSI R A, ZHOU R, AHMED N K. Deep inductive graph representation learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(3): 438-452. DOI: 10.1109/TKDE.2018.2878247. [34] WU Z H, PAN S R, CHEN F W, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 4-24. DOI: 10.1109/TNNLS.2020.2978386. [35] 焦李成, 杨淑媛, 刘芳, 等. 神经网络七十年: 回顾与展望[J]. 计算机学报, 2016, 39(8): 1697-1716. [36] SUN C, CAO Y K, WEI J M, et al. Autoencoder-based drug-target interaction prediction by preserving the consistency of chemical properties and functions of drugs[J]. Bioinformatics, 2021, 37(20):3618-3625. DOI: 10.1093/bioinformatics/btab384. [37] XUAN P, ZHANG Y, CUI H, et al. Integrating multi-scale neighbouring topologies and cross-modal similarities for drug-protein interaction prediction[J]. Briefings in Bioinformatics, 2021, 22(5): bbab119. DOI: 10.1093/bib/bbab119. [38] GAO K Y, FOKOUE A, LUO H, et al. Interpretable drug target prediction using deep neural representation[C]// Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence. Marina del Rey, CA: IJCAI, 2018: 3371-3377. DOI: 10.24963/ijcai.2018/468. [39] WANG S, CHO H H, ZHAI C X, et al. Exploiting ontology graph for predicting sparsely annotated gene function[J]. Bioinformatics, 2015, 31(12): i357-i364. DOI: 10.1093/bioinformatics/btv260. [40] KIPF T N, WELLING M. Variational graph auto-encoders[EB/OL]. (2016-11-21)[2021-07-23]. https://arxiv.org/abs/1611.07308. [41] KNOX C, LAW V, JEWISON T, et al. DrugBank 3.0: a comprehensive resource for ‘Omics' research on drugs[J]. Nucleic Acids Research, 2011, 39(suppl_1): D1035-D1041. DOI: 10.1093/nar/gkq1126. [42] PRASAD T S K, GOEL R, KANDASAMY K, et al. Human protein reference database: 2009 update[J]. Nucleic Acids Research, 2009, 37(suppl_1): D767-D772. DOI: 10.1093/nar/gkn892. [43] DAVISA P, MURPHY C G, JOHNSON R, et al. The comparative toxicogenomics database: update 2013[J]. Nucleic Acids Research, 2013, 41(D1): D1104-D1114. DOI: 10.1093/nar/gks994. [44] KUHN M, CAMPILLOS M, LETUNIC I, et al. A side effect resource to capture phenotypic effects of drugs[J]. Molecular Systems Biology, 2010, 6(1): 343. DOI: 10.1038/msb.2009.98. [45] ROGERS D, HAHN M. Extended-connectivity fingerprints[J]. Journal ofChemical Information and Modeling, 2010, 50(5): 742-754. DOI: 10.1021/ci100050t. [46] SMITH T F, WATERMAN M S. Identification of common molecular subsequences[J]. Journal of Molecular Biology, 1981, 147(1): 195-197. DOI: 10.1016/0022-2836(81)90087-5. [47] XIA Z, WU L Y, ZHOU X B, et al. Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces[J]. BMC Systems Biology, 2010, 4(Suppl 2): S6. DOI: 10.1186/1752-0509-4-S2-S6. [48] WANG W H, YANG S, ZHANG X, et al. Drug repositioning by integrating target information through a heterogeneous network model[J]. Bioinformatics, 2014, 30(20): 2923-2930. DOI: 10.1093/bioinformatics/btu403. [49] DUVENAUD D, MACLAURIN D, AGUILERA-IPARRAGUIRRE J, et al. Convolutional networks on graphs for learning molecular fingerprints[EB/OL]. (2015-11-03)[2021-07-23]. https://arxiv.org/abs/1509.09292v2. [50] YANG Y Z, DU H, LI Y H, et al. NR3C1 gene polymorphisms are associated with high-altitude pulmonary edema in Han Chinese[J]. Journal of Physiological Anthropology, 2019, 38: 4. DOI: 10.1186/s40101-019-0194-1. [51] LIU G X, REMME C A, BOUKENS B J, et al. Overexpression of SCN5A in mouse heart mimics human syndrome of enhanced atrioventricular nodal conduction[J]. Heart Rhythm, 2015, 12(5): 1036-1045. DOI: 10.1016/j.hrthm.2015.01.029. [52] THOMAS G, GURUNG I S, KILLEEN M J, et al. Effects of L-type Ca2+ channel antagonism on ventricular arrhythmogenesis in murine hearts containing a modification in the Scn5a gene modelling human long QT syndrome 3[J]. The Journal of Physiology, 2007, 578(1): 85-97. DOI: 10.1113/jphysiol.2006.121921. [53] ULLRICH K, WURSTER K D, LAMPRECHT B, et al. BAY 43-9006/Sorafenib blocks CSF1R activity and induces apoptosis in various classical Hodgkin lymphoma cell lines[J]. British Journal of Haematology, 2011, 155(3): 398-402. DOI: 10.1111/j.1365-2141.2011.08685.x. [54] TSURKAN L G, HATFIELD M J, EDWARDS C C, et al. Inhibition of human carboxylesterases hCE1 and hiCE by cholinesterase inhibitors[J]. Chemico-biological interactions, 2013, 203(1): 226-230. DOI: 10.1016/j.cbi.2012.10.018. |
[1] | KONG Yayu, LU Yujie, SUN Zhongtian, XIAO Jingxian, HOU Haochen, CHEN Tingwei. Research on Graph Neural Network Recommendation Algorithms for Reinforcing Current Interest [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 151-160. |
[2] | NIE Yu, LIAO Xiangwen, WEI Jingjing, YANG Dingda, CHEN Guolong. Multi-label Classification Based on the Deep Autoencoder [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 71-79. |
|