Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (1): 102-112.doi: 10.16088/j.issn.1001-6600.2022031703
Previous Articles Next Articles
PAN Haiming1, CHEN Qingfeng1*, QIU Jie2, HE Naixu1, LIU Chunyu1, DU Xiaojing1
CLC Number:
[1] JI S X,PAN S R,CAMBRIA E,et al. A survey on knowledge graphs:representation,acquisition,and applications[J]. IEEE Transactions on Neural Networks and Learning Systems,2022,33(2):494-514. DOI:10.1109/TNNLS.2021.3070843. [2]曹明宇,李青青,杨志豪,等. 基于知识图谱的原发性肝癌知识问答系统[J]. 中文信息学报,2019,33(6):88-93. DOI:10.3969/j.issn.1003-0077.2019.06.013. [3]陈程,翟洁,秦锦玉,等. 基于中医药知识图谱的智能问答技术研究[J]. 中国新通信,2018,20(2):204-207. DOI:10.3969/j.issn.1673-4866.2018.02.174. [4]王继伟,梁怀众,樊伟,等. 基于中文医疗知识图谱的智能问答系统设计与实现方法[J]. 中国数字医学,2021,16(2):54-58. DOI:10.3969/j.issn.1673-7571.2021.02.012. [5]杜泽宇,杨燕,贺樑. 基于中文知识图谱的电商领域问答系统[J]. 计算机应用与软件,2017,34(5):153-159. DOI:10.3969/j.issn.1000-386x.2017.05.027. [6]谭刚,陈聿,彭云竹. 融合领域特征知识图谱的电网客服问答系统[J]. 计算机工程与应用,2020,56(3):232-239. DOI:10.3778/j.issn.1002-8331.1907-0385. [7]李轩. 基于知识图谱的教育领域知识问答系统的研究与应用[D]. 吉林:吉林大学,2019. [8]WANG Q,MAO Z D ,WANG B,et al. Knowledge graph embedding:a survey of approaches and applications[J]. IEEE Transactions on Knowledge and Data Engineering,2017,29(12):2724-2743. DOI:10.1109/TKDE.2017.2754499. [9]QIU X P,SUN T X,XU Y G,et al. Pre-trained models for natural language processing:a survey[J]. Science China Technological Sciences,2020,63(10):1872-1897. DOI:10.1007/s11431-020-1647-3. [10]LAN W,WU X M,CHEN Q F,et al. GANLDA:graph attention network for lncRNA-disease associations prediction[J]. Neurocomputing,2022,469:384-393. DOI:10.1016/j.neucom.2020.09.094. [11]LAN W,DONG Y,CHEN Q F,et al. IGNSCDA:predicting CircRNA-disease associations based on improved graph convolutional network and negative sampling[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics,2022,19(6):3530-3538. DOI:10.1109/TCBB.2021.3111607. [12]SUN H T,DHINGRA B,ZAHEER M,et al. Open domain question answering using early fusion of knowledge bases and text[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg,PA:Association for Computational Linguistics,2018:4231-4242. DOI:10.18653/v1/D18-1455. [13]SUN H T,BEDRAX-WEISS T,COHEN W W. PullNet:open domain question answering with iterative retrieval on knowledge bases and text[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing(EMNLP-IJCNLP). Stroudsburg,PA:Association for Computational Linguistics,2019:2380-2390. DOI:10.18653/v1/D19-1242. [14]SCHLICHTKRULL M,KIPF T N,BLOEM P,et al. Modeling relational data with graph convolutional networks[C]// The Semantic Web:LNCS Volume 10843. Cham:Springer International Publishing AG,2018:593-607. DOI:10.1007/978-3-319-93417-4_38. [15]李肯立,李旻佳,刘楚波,等. 一种基于图神经网络嵌入匹配的知识图谱问答方法和系统:CN202011624049.6[P]. 2021-05-07. [16]HAN J L,CHENG B,WANG X. Hypergraph convolutional network for multi-hop knowledge base question answering(student abstract)[J]. Proceedings of the AAAI Conference on Artificial Intelligence,2020,34(10):13801-13802. DOI:10.1609/aaai.v34i10.7172. [17]HAN J L,CHENG B,WANG X. Two-phase hypergraph based reasoning with dynamic relations for multi-hop KBQA[C]// Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence. Yokohama:IJCAI,2020:3615-3621. DOI:10.24963/ijcai.2020/500. [18]YIH W T,CHANG M W,HE X D,et al. Semantic parsing via staged query graph generation:question answering with knowledge base[C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing(Volume 1: Long Papers). Stroudsburg,PA:Association for Computational Linguistics,2015:1321-1331. DOI:10.3115/v1/P15-1128. [19]LUO K Q,LIN F L,LUO X S,et al. Knowledge base question answering via encoding of complex query graphs[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg,PA:Association for Computational Linguistics,2018:2185-2194. DOI:10.18653/v1/D18-1242. [20]LAN Y S,JIANG J. Query graph generation for answering multi-hop complex questions from knowledge bases[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg,PA:Association for Computational Linguistics,2020:969-974. DOI:10.18653/v1/2020.acl-main.91. [21]SAXENA A,TRIPATHI A,TALUKDAR P. Improving multi-hop question answering over knowledge graphs using knowledge base embeddings[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg,PA:Association for Computational Linguistics,2020:4498-4507. DOI:10.18653/v1/2020.acl-main.412. [22]TROUILLON T,WELBL J,RIEDEL S,et al. Complex embeddings for simple link prediction[C]// Proceedings of the 33nd International Conference on Machine Learning:PMLR Volume 48. New York,NY:PMLR,2016:2071-2080. [23]LIU Y H,OTT M,GOYAL N,et al. RoBERTa:a robustly optimized BERT pretraining approach[EB/OL].(2019-07-26)[2022-03-17]. https://arxiv.org/abs/1907.11692. DOI:10.48550/arXiv.1907.11692. [24]SUN H T,ARNOLD A O,BEDRAX-WEISS T,et al. Faithful embeddings for knowledge base queries[EB/OL].(2021-01-29)[2022-03-17]. https://arxiv.org/abs/2004.03658. DOI:10.48550/arXiv.2004.03658. [25]张天杭,李婷婷,张永刚. 基于知识图谱嵌入的多跳中文知识问答方法[J]. 吉林大学学报(理学版),2022,60(1):119-126. DOI:10.13413/j.cnki.jdxblxb.2020417. [26]ZHOU P,SHI W,TIAN J,et al. Attention-based bidirectional long short-term memory networks for relation classification[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg,PA:Association for Computational Linguistics,2016:207-212. DOI:10.18653/v1/P16-2034. [27]MIKOLOV T,CHEN K,CORRADO G,et al. Efficient estimation of word representations in vector space[EB/OL].(2013-09-07)[2022-03-17]. https://arxiv.org/abs/1301.3781. DOI:10.48550/arXiv.1301.3781. [28]PENNINGTON J,SOCHER R,MANNING C D. GloVe:global vectors for word representation[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing(EMNLP). Stroudsburg, PA:Association for Computational Linguistics,2014:1532-1543. DOI:10.3115/v1/d14-1162. [29]PETERS M E,NEUMANN M,IYYER M,et al. Deep contextualized word representations[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. Stroudsburg,PA:Association for Computational Linguistics Press,2018:2227-2237. DOI:10.18653/v1/n18-1202. [30]DEVLIN J,CHANG M W,LEE K,et al. BERT:pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologie, Volume 1(Long and Short Papers). Stroudsburg,PA:Association for Computational Linguistics,2019:4171-4186. DOI:10.18653/v1/n19-1423. [31]刘知远,孙茂松,林衍凯,等. 知识表示学习研究进展[J]. 计算机研究与发展,2016,53(2):247-261. DOI:10.7544/issn1000-1239.2016.20160020. [32]ZHANG Z,ZHUANG F Z,ZHU H S,et al. Relational graph neural network with hierarchical attention for knowledge graph completion[J]. Proceedings of the AAAI Conference on Artificial Intelligence,2020,34(5):9612-9619. DOI:10.1609/aaai.v34i05.6508. [33]WANG H W,ZHANG F Z,ZHANG M D,et al. Knowledge-aware graph neural networks with label smoothness regularization for recommender systems[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York,NY:Association for Computing Machinery,2019:968-977. DOI:10.1145/3292500. 3330836. [34]李慧慧,张洁,夏军生,等. 一种基于知识图谱嵌入的用户实体群组推荐方法:CN202110024581.2[P]. 2021-04-30. [35]李林峰. 面向临床决策支持的人工智能关键技术研究[D]. 北京:北京交通大学,2020.DOI:10.26944/d.cnki.gbfju.2020.000101. [36]LAN W,DONG Y,CHEN Q F,et al. KGANCDA:predicting circRNA-disease associations based on knowledge graph attention network[J]. Briefings in Bioinformatics,2022,23(1):bbab494. DOI:10.1093/bib/bbab494. [37]ZHANG Y Y,DAI H J,KOZAREVA Z,et al. Variational reasoning for question answering with knowledge graph[J]. Proceedings of the AAAI Conference on Artificial Intelligence,2018,32(1):6069-6076. DOI:10.1609/aaai.v32i1.12057. [38]MILLER A,FISCH A,DODGE J,et al. Key-value memory networks for directly reading documents[C]// Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg,PA: Association for Computational Linguistics,2016:1400-1409. DOI:10.18653/v1/D16-1147. [39]XIONG W H,YU M,CHANG S Y,et al. Improving question answering over incomplete KBs with knowledge-aware reader[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg,PA:Association for Computational Linguistics,2019:4258-4264. DOI:10.18653/v1/p19-1417. |
[1] | HAO Yaru, DONG Li, XU Ke, LI Xianxian. Interpretability of Pre-trained Language Models: A Survey [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 59-71. |
[2] | TIAN Sheng, SONG Lin. Traffic Sign Recognition Based on CNN and Bagging Integration [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 35-46. |
[3] | LI Zhengguang, CHEN Heng, LIN Hongfei. Identification of Adverse Drug Reaction on Social Media Using Bi-directional Language Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 40-48. |
[4] | ZHOU Shengkai, FU Lizhen, SONG Wen’ai. Semantic Similarity Computing Model for Short Text Based on Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 49-56. |
[5] | MA Chengxu, ZENG Shangyou, ZHAO Junbo, CHEN Hongyang. Research on Backlight Image Enhancement Based on Convolutional Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 81-90. |
[6] | CHEN Wenkang, LU Shenglian, LIU Binghao, LI Guo, LIU Xiaoyu, CHEN Ming. Real-time Citrus Recognition under Orchard Environment by Improved YOLOv4 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 134-146. |
[7] | YANG Zhou, FAN Yixing, ZHU Xiaofei, GUO Jiafeng, WANG Yue. Survey on Modeling Factors of Neural Information Retrieval Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 1-12. |
[8] | DENG Wenxuan, YANG Hang, JIN Ting. A Dimensionality-reduction Method Based on Attention Mechanismon Image Classification [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 32-40. |
[9] | YAN Hao, XU Hongbo, SHEN Yinghan, CHENG Xueqi. Research on Open Chinese Event Detection [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 64-71. |
[10] | FAN Rui, JIANG Pinqun, ZENG Shangyou, XIA Haiying, LIAO Zhixian, LI Peng. Design of Lightweight Convolution Neural Network Based on Multi-scale Parallel Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 50-59. |
[11] | WU Wenya,CHEN Yufeng,XU Jin’an,ZHANG Yujie. High-level Semantic Attention-based Convolutional Neural Networks for Chinese Relation Extraction [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 32-41. |
[12] | XUE Yang,ZENG Qingke,XIA Haiying,WANG Wentao. Remote Sensing Image Fusion Based on Convolutional Neural Network Super-resolution Reconstruction [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(2): 33-41. |
|