Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (1): 102-112.doi: 10.16088/j.issn.1001-6600.2022031703

Previous Articles     Next Articles

Multi-hop Knowledge Graph Question Answering Based on Convolution Reasoning

PAN Haiming1, CHEN Qingfeng1*, QIU Jie2, HE Naixu1, LIU Chunyu1, DU Xiaojing1   

  1. 1. School of Computer Electronics and Information, Guangxi University, Nanning Guangxi 530004, China;
    2. School of Computer Science and Engineering,Yulin Normal University, Yulin Guangxi 537000, China
  • Received:2022-03-17 Revised:2022-04-19 Online:2023-01-25 Published:2023-03-07

Abstract: Compared with simple questions, multi-hop questions are more in line with people's daily questioning methods. At the same time, the research on the multi-hop knowledge graph question-answering (KGQA) algorithm is useful to enhance the intelligent question answering system. However, the existing multi-hop KGQA methods show weak answer reasoning ability in 2 and 3-hop questions and incomplete knowledge graph. To solve this problem, a multi-hop KGQA based on convolution reasoning is proposed in this paper. A question embedding model combining character features and semantic features is developed according to the semantic similarity between questions and relationships to obtain more expressive question embedding. Furthermore, to enhance the long link reasoning ability of the algorithm, an answer reasoning model based on convolutional neural network (CNN) is proposed to extract the high-order information of the embedding. The experimental results on MetaQA dataset demonstrate that compared with the five existing methods, the new algorithm improves the prediction accuracy of the 2-hop and 3-hop questions in the complete knowledge graph and incomplete knowledge graph by 1.7%, 1.3%, 9.4%, and 9.3%, respectively.

Key words: knowledge graph question-answering, knowledge graph embedding, language model, convolutional neural network

CLC Number: 

  • TP391.1
[1] JI S X,PAN S R,CAMBRIA E,et al. A survey on knowledge graphs:representation,acquisition,and applications[J]. IEEE Transactions on Neural Networks and Learning Systems,2022,33(2):494-514. DOI:10.1109/TNNLS.2021.3070843.
[2]曹明宇,李青青,杨志豪,等. 基于知识图谱的原发性肝癌知识问答系统[J]. 中文信息学报,2019,33(6):88-93. DOI:10.3969/j.issn.1003-0077.2019.06.013.
[3]陈程,翟洁,秦锦玉,等. 基于中医药知识图谱的智能问答技术研究[J]. 中国新通信,2018,20(2):204-207. DOI:10.3969/j.issn.1673-4866.2018.02.174.
[4]王继伟,梁怀众,樊伟,等. 基于中文医疗知识图谱的智能问答系统设计与实现方法[J]. 中国数字医学,2021,16(2):54-58. DOI:10.3969/j.issn.1673-7571.2021.02.012.
[5]杜泽宇,杨燕,贺樑. 基于中文知识图谱的电商领域问答系统[J]. 计算机应用与软件,2017,34(5):153-159. DOI:10.3969/j.issn.1000-386x.2017.05.027.
[6]谭刚,陈聿,彭云竹. 融合领域特征知识图谱的电网客服问答系统[J]. 计算机工程与应用,2020,56(3):232-239. DOI:10.3778/j.issn.1002-8331.1907-0385.
[7]李轩. 基于知识图谱的教育领域知识问答系统的研究与应用[D]. 吉林:吉林大学,2019.
[8]WANG Q,MAO Z D ,WANG B,et al. Knowledge graph embedding:a survey of approaches and applications[J]. IEEE Transactions on Knowledge and Data Engineering,2017,29(12):2724-2743. DOI:10.1109/TKDE.2017.2754499.
[9]QIU X P,SUN T X,XU Y G,et al. Pre-trained models for natural language processing:a survey[J]. Science China Technological Sciences,2020,63(10):1872-1897. DOI:10.1007/s11431-020-1647-3.
[10]LAN W,WU X M,CHEN Q F,et al. GANLDA:graph attention network for lncRNA-disease associations prediction[J]. Neurocomputing,2022,469:384-393. DOI:10.1016/j.neucom.2020.09.094.
[11]LAN W,DONG Y,CHEN Q F,et al. IGNSCDA:predicting CircRNA-disease associations based on improved graph convolutional network and negative sampling[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics,2022,19(6):3530-3538. DOI:10.1109/TCBB.2021.3111607.
[12]SUN H T,DHINGRA B,ZAHEER M,et al. Open domain question answering using early fusion of knowledge bases and text[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg,PA:Association for Computational Linguistics,2018:4231-4242. DOI:10.18653/v1/D18-1455.
[13]SUN H T,BEDRAX-WEISS T,COHEN W W. PullNet:open domain question answering with iterative retrieval on knowledge bases and text[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing(EMNLP-IJCNLP). Stroudsburg,PA:Association for Computational Linguistics,2019:2380-2390. DOI:10.18653/v1/D19-1242.
[14]SCHLICHTKRULL M,KIPF T N,BLOEM P,et al. Modeling relational data with graph convolutional networks[C]// The Semantic Web:LNCS Volume 10843. Cham:Springer International Publishing AG,2018:593-607. DOI:10.1007/978-3-319-93417-4_38.
[15]李肯立,李旻佳,刘楚波,等. 一种基于图神经网络嵌入匹配的知识图谱问答方法和系统:CN202011624049.6[P]. 2021-05-07.
[16]HAN J L,CHENG B,WANG X. Hypergraph convolutional network for multi-hop knowledge base question answering(student abstract)[J]. Proceedings of the AAAI Conference on Artificial Intelligence,2020,34(10):13801-13802. DOI:10.1609/aaai.v34i10.7172.
[17]HAN J L,CHENG B,WANG X. Two-phase hypergraph based reasoning with dynamic relations for multi-hop KBQA[C]// Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence. Yokohama:IJCAI,2020:3615-3621. DOI:10.24963/ijcai.2020/500.
[18]YIH W T,CHANG M W,HE X D,et al. Semantic parsing via staged query graph generation:question answering with knowledge base[C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing(Volume 1: Long Papers). Stroudsburg,PA:Association for Computational Linguistics,2015:1321-1331. DOI:10.3115/v1/P15-1128.
[19]LUO K Q,LIN F L,LUO X S,et al. Knowledge base question answering via encoding of complex query graphs[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg,PA:Association for Computational Linguistics,2018:2185-2194. DOI:10.18653/v1/D18-1242.
[20]LAN Y S,JIANG J. Query graph generation for answering multi-hop complex questions from knowledge bases[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg,PA:Association for Computational Linguistics,2020:969-974. DOI:10.18653/v1/2020.acl-main.91.
[21]SAXENA A,TRIPATHI A,TALUKDAR P. Improving multi-hop question answering over knowledge graphs using knowledge base embeddings[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg,PA:Association for Computational Linguistics,2020:4498-4507. DOI:10.18653/v1/2020.acl-main.412.
[22]TROUILLON T,WELBL J,RIEDEL S,et al. Complex embeddings for simple link prediction[C]// Proceedings of the 33nd International Conference on Machine Learning:PMLR Volume 48. New York,NY:PMLR,2016:2071-2080.
[23]LIU Y H,OTT M,GOYAL N,et al. RoBERTa:a robustly optimized BERT pretraining approach[EB/OL].(2019-07-26)[2022-03-17]. https://arxiv.org/abs/1907.11692. DOI:10.48550/arXiv.1907.11692.
[24]SUN H T,ARNOLD A O,BEDRAX-WEISS T,et al. Faithful embeddings for knowledge base queries[EB/OL].(2021-01-29)[2022-03-17]. https://arxiv.org/abs/2004.03658. DOI:10.48550/arXiv.2004.03658.
[25]张天杭,李婷婷,张永刚. 基于知识图谱嵌入的多跳中文知识问答方法[J]. 吉林大学学报(理学版),2022,60(1):119-126. DOI:10.13413/j.cnki.jdxblxb.2020417.
[26]ZHOU P,SHI W,TIAN J,et al. Attention-based bidirectional long short-term memory networks for relation classification[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg,PA:Association for Computational Linguistics,2016:207-212. DOI:10.18653/v1/P16-2034.
[27]MIKOLOV T,CHEN K,CORRADO G,et al. Efficient estimation of word representations in vector space[EB/OL].(2013-09-07)[2022-03-17]. https://arxiv.org/abs/1301.3781. DOI:10.48550/arXiv.1301.3781.
[28]PENNINGTON J,SOCHER R,MANNING C D. GloVe:global vectors for word representation[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing(EMNLP). Stroudsburg, PA:Association for Computational Linguistics,2014:1532-1543. DOI:10.3115/v1/d14-1162.
[29]PETERS M E,NEUMANN M,IYYER M,et al. Deep contextualized word representations[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. Stroudsburg,PA:Association for Computational Linguistics Press,2018:2227-2237. DOI:10.18653/v1/n18-1202.
[30]DEVLIN J,CHANG M W,LEE K,et al. BERT:pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologie, Volume 1(Long and Short Papers). Stroudsburg,PA:Association for Computational Linguistics,2019:4171-4186. DOI:10.18653/v1/n19-1423.
[31]刘知远,孙茂松,林衍凯,等. 知识表示学习研究进展[J]. 计算机研究与发展,2016,53(2):247-261. DOI:10.7544/issn1000-1239.2016.20160020.
[32]ZHANG Z,ZHUANG F Z,ZHU H S,et al. Relational graph neural network with hierarchical attention for knowledge graph completion[J]. Proceedings of the AAAI Conference on Artificial Intelligence,2020,34(5):9612-9619. DOI:10.1609/aaai.v34i05.6508.
[33]WANG H W,ZHANG F Z,ZHANG M D,et al. Knowledge-aware graph neural networks with label smoothness regularization for recommender systems[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York,NY:Association for Computing Machinery,2019:968-977. DOI:10.1145/3292500. 3330836.
[34]李慧慧,张洁,夏军生,等. 一种基于知识图谱嵌入的用户实体群组推荐方法:CN202110024581.2[P]. 2021-04-30.
[35]李林峰. 面向临床决策支持的人工智能关键技术研究[D]. 北京:北京交通大学,2020.DOI:10.26944/d.cnki.gbfju.2020.000101.
[36]LAN W,DONG Y,CHEN Q F,et al. KGANCDA:predicting circRNA-disease associations based on knowledge graph attention network[J]. Briefings in Bioinformatics,2022,23(1):bbab494. DOI:10.1093/bib/bbab494.
[37]ZHANG Y Y,DAI H J,KOZAREVA Z,et al. Variational reasoning for question answering with knowledge graph[J]. Proceedings of the AAAI Conference on Artificial Intelligence,2018,32(1):6069-6076. DOI:10.1609/aaai.v32i1.12057.
[38]MILLER A,FISCH A,DODGE J,et al. Key-value memory networks for directly reading documents[C]// Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg,PA: Association for Computational Linguistics,2016:1400-1409. DOI:10.18653/v1/D16-1147.
[39]XIONG W H,YU M,CHANG S Y,et al. Improving question answering over incomplete KBs with knowledge-aware reader[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg,PA:Association for Computational Linguistics,2019:4258-4264. DOI:10.18653/v1/p19-1417.
[1] HAO Yaru, DONG Li, XU Ke, LI Xianxian. Interpretability of Pre-trained Language Models: A Survey [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 59-71.
[2] TIAN Sheng, SONG Lin. Traffic Sign Recognition Based on CNN and Bagging Integration [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 35-46.
[3] LI Zhengguang, CHEN Heng, LIN Hongfei. Identification of Adverse Drug Reaction on Social Media Using Bi-directional Language Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 40-48.
[4] ZHOU Shengkai, FU Lizhen, SONG Wen’ai. Semantic Similarity Computing Model for Short Text Based on Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 49-56.
[5] MA Chengxu, ZENG Shangyou, ZHAO Junbo, CHEN Hongyang. Research on Backlight Image Enhancement Based on Convolutional Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 81-90.
[6] CHEN Wenkang, LU Shenglian, LIU Binghao, LI Guo, LIU Xiaoyu, CHEN Ming. Real-time Citrus Recognition under Orchard Environment by Improved YOLOv4 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 134-146.
[7] YANG Zhou, FAN Yixing, ZHU Xiaofei, GUO Jiafeng, WANG Yue. Survey on Modeling Factors of Neural Information Retrieval Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 1-12.
[8] DENG Wenxuan, YANG Hang, JIN Ting. A Dimensionality-reduction Method Based on Attention Mechanismon Image Classification [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 32-40.
[9] YAN Hao, XU Hongbo, SHEN Yinghan, CHENG Xueqi. Research on Open Chinese Event Detection [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 64-71.
[10] FAN Rui, JIANG Pinqun, ZENG Shangyou, XIA Haiying, LIAO Zhixian, LI Peng. Design of Lightweight Convolution Neural Network Based on Multi-scale Parallel Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 50-59.
[11] WU Wenya,CHEN Yufeng,XU Jin’an,ZHANG Yujie. High-level Semantic Attention-based Convolutional Neural Networks for Chinese Relation Extraction [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 32-41.
[12] XUE Yang,ZENG Qingke,XIA Haiying,WANG Wentao. Remote Sensing Image Fusion Based on Convolutional Neural Network Super-resolution Reconstruction [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(2): 33-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Chan, WAN Yaqiong, HUANG Xiaofu, YUAN Xudong, ZHOU Hongyan, FANG Haocun, LI Dayong, LI Jiaqi. Activity Rhythm of Muntiacus reevesi Based on Infrared Camera Technology[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(1): 65 -70 .
[2] JIANG Xianghui, TAN Rong, YANG Yongping, XIAO Qingzong. Analysis of Network Pharmacology and Confirmation of Mahonia fortunei (Lindl. ) Fedde and Glycyrrhiza uralensis Fisch Decoction for Hepatitis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 198 -209 .
[3] ZHANG Shunsheng, LUO Yuling, QIU Senhui. Stochastic Attack Method Based on Mahalanobis Distance against AES Cryptosystem[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 33 -43 .
[4] MA Chengxu, ZENG Shangyou, ZHAO Junbo, CHEN Hongyang. Research on Backlight Image Enhancement Based on Convolutional Neural Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 81 -90 .
[5] CHEN Chao, XU Zhenghui, ZHANG Xinmin, GUO Ningyan, LIU Xia, QIAN Yishun, QI Biao. Ant Species Diversity of Middle Daliangshan in Sichuan, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 218 -230 .
[6] LI Jun, LIANG Xiaoqin, CHANG Yanling, HUANG Yan, PAN Liwei. Review on the Constituents and Pharmacological Activities of Cyclocarya paliurus[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 227 -252 .
[7] WU Huan-zhen, WU Yu. Quantitative Research on BBS Emergent Internet Public Opinion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(3): 155 -159 .
[8] CHEN Jia-rui, CAO Jian-hua, LI Tao, HUANGYan-mei, PANG Ting-cai, HE Yuan-yuan. Soil Microorganisms in Typical Karst Region of Southwest China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(4): 96 -100 .
[9] ZHANG Mengyun, GE Jing, LIN Zhigui. Logistic Diffusion Problem and Its Analysis on Three Types of Domains[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 17 -23 .
[10] CHEN Yao, LI Meishan, QIN Feng, WANG Hengshan. Research Progress on Chemical Components and Pharmacological Effects of Zanthoxylum nitidum (Roxb.) DC. in Recent Five Years[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 24 -37 .