Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (1): 87-101.doi: 10.16088/j.issn.1001-6600.2022021104

Previous Articles     Next Articles

A Multi-source Data Fusion and Privacy Protection Method of POI Recommendation

WANG Li’e1,2, WANG Yihui1, LI Xianxian1,2*   

  1. 1. School of Computer Science and Engineering, Guangxi Normal University, Guilin Guangxi 541004, China;
    2. Guangxi Key Lab of Multi-source Information Mining and Security (Guangxi Normal University), Guilin Guangxi 541004, China
  • Received:2022-02-11 Revised:2022-07-27 Online:2023-01-25 Published:2023-03-07

Abstract: With the development of mobile location technology, the point-of-Interest (POI) recommendation technology has become one of the research hotspots in the field of recommendation system. Limited by the check-in ability of users, there is a serious data sparsity problem in POI recommendation, what’s more, POI recommendations with combining multiple sources of data is faced with the challenges of multiple privacy. Because data from multiple sources have privacy characteristics of diversity and pluralism, the mechanism of privacy leakage is more complex and diverse, which makes the privacy problem more challenging. To solve this problem, a multi-source POI recommendation with attention mechanism and privacy protection, MultiAM&PP_POI, is proposed in this paper. In order to achieve effective data fusion, LDA topic model to extract users’ potential features in different domains is used in this paper, and an attention mechanism is used to adaptively train the influence of potential features in different domains on POI recommendation results. Meanwhile, multi-layer perceptron method is used to realize the transfer of potential features in different domains. As for the privacy problem in the recommendation of multi-source POI, the federated learning framework is used to save the original data locally without uploading, so each participant only needs to interact with the potential features after encryption. The attention mechanism is improved so multi-layer perceptron can finish training in ciphertext state to protect the security of user privacy. Finally, through experimental verification, the proposed model can effectively improve the recommendation accuracy by 3.05% and 4.42% compared with the single-source federated model and other cross-domain models on the premise of protecting users’ privacy.

Key words: point-of-interest recommendation, multi-source fusion, attention mechanism, privacy protection, federated learning

CLC Number: 

  • TP391
[1] ZHANG C Y,WANG K. POI recommendation through cross-region collaborative filtering[J]. Knowledge and Information Systems,2016,46(2):369-387,DOI:10.1007/s10115-015-0825-8.
[2]LI X,JIANG M M,HONG H T,et al. A time-aware personalized point-of-interest recommendation via high-order tensor factorization[J]. ACM Transactions on Information Systems,2017,35(4):31. DOI:10.1145/3057283.
[3]CHANG B,KOH Y,PARK D,et al. Content-aware successive point-of-interest recommendation[C]// Proceedings of the 2020 SIAM International Conference on Data Mining(SDM). Philadelphia,PA:Society for Industrial and Applied Mathematics,2020:100-108. DOI:10.1137/1.9781611976236.12.
[4]XU Y N,XU L,HUANG L,et al. Social and content based collaborative filtering for point-of-interest recommendations[C]// Neural Information Processing:LNTCS Volume 10638. Cham:Springer International Publishing AG,2017:46-56. DOI:10.1007/978-3-319-70139-4_5.
[5]XU Y Y,LI X F,LI J,et al. SSSER:Spatiotemporal sequential and social embedding bank for successive point-of-interest recommendation[J]. IEEE Access,2019,7:156804-156823. DOI:10.1109/ACCESS.2019.2950061.
[6]夏英,张金凤. 融合社交关系和局部地理因素的兴趣点推荐[J]. 计算机工程与应用,2021,57(15):133-139. DOI:10.3778/j.issn.1002-8331.2007-0172.
[7]王启正. 隐私保护下的数据处理[D]. 济南:山东师范大学,2019.
[8]LI L C,LU R X,CHOO K K R,et al. Privacy-preserving-outsourced association rule mining on vertically partitioned databases[J]. IEEE Transactions on Information Forensics and Security,2016,11(8):1847-1861. DOI:10.1109/TIFS.2016.2561241.
[9]PAN Z G,CUI L,WU X Y,et al. Deep potential geo-social relationship mining for point-of-interest recommendation[J]. IEEE Access,2019,7:99496-99507. DOI:10.1109/ACCESS.2019.2930311.
[10]STEFANCOVA E,SRBA I. POI recommendation based on locality-specific seasonality and long-term trends[C]// SOFSEM 2020:Theory and Practice of Computer Science:LNCS Volume 12011. Cham:Springer Nature Switzerland AG,2020:338-349. DOI:10.1007/978-3-030-38919-2_28.
[11]叶继华,杨思渝,左家莉,等. 基于时空上下文信息的POI推荐模型研究[J]. 电子与信息学报,2021,43(12):3546-3553. DOI:10.11999/JEIT200368.
[12]陈炯,张虎,曹付元. 融合多因素的兴趣点协同推荐方法研究[J]. 计算机科学,2019,46(10):77-83. DOI:10.11896/jsjkx.180901757.
[13]DA SILVA E D S,LANGSETH H,RAMAMPIARO H. Content-based social recommendation with poisson matrix factorization[C]// Machine Learning and Knowledge Discovery in Databases:LNCS Volume 10534. Cham:Springer International Publishing AG,2017:530-546. DOI:10.1007/978-3-319-71249-9_32.
[14]CHANG B,PARK Y,PARK D,et al. Content-aware hierarchical point-of-interest embedding model for successive POI recommendation[C]// Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence. Stockholm:IJCAI,2018:3301-3307. DOI:10.24963/ijcai.2018/458.
[15]陈劲松,孟祥武,纪威宇,等. 基于多维上下文感知图嵌入模型的兴趣点推荐[J]. 软件学报,2020,31(12):3700-3715. DOI:10.13328/j.cnki.jos.005855.
[16]刘真,王娜娜,王晓东,等. 位置社交网络中谱嵌入增强的兴趣点推荐算法[J]. 通信学报,2020,41(3):197-206. DOI:10.11959/j.issn.1000-436x.2020053.
[17]任星怡,宋美娜,宋俊德. 基于位置社交网络的上下文感知的兴趣点推荐[J]. 计算机学报,2017,40(4):824-841. DOI:10.11897/SP.J.1016.2017.00824.
[18]ZHANG Z Y,LIU Y,ZHANG Z J,et al. Fused matrix factorization with multi-tag,social and geographical influences for POI recommendation[J].World Wide Web,2019,22(3):1135-1150. DOI:10.1007/s11280-018-0579-9.
[19]ZENG J,LI F,HE X,et al. Fused collaborative filtering with user preference,geographical and social Influence for point of interest recommendation[J]. International Journal of Web Services Research,2019,16(4):40-52. DOI:10.4018/ijwsr. 2019100103.
[20]LI D C,GONG Z G,ZHANG D F. A common topic transfer learning model for crossing city POI recommendations[J].IEEE Transactions on Cybernetics,2019,49(12):4282-4295,DOI:10.1109/TCYB.2018.2861897.
[21]DING J T,YU G H,LI Y,et al.Learning from hometown and current city:cross-city POI recommendation via interest drift and transfer learning[J]. Proceedings of the ACM on Interactive,Mobile,Wearable and Ubiquitous Technologies,2019,3(4):131. DOI:10.1145/3369822.
[22]YIN H Z,SUN Y Z,CUI B,et al. LCARS:a location-content-aware recommender system[C]// Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York,NY:Association for Computing Machinery,2013:221-229. DOI:10.1145/2487575.2487608.
[23]WEN Y,ZHANG J S,ZENG Q T,et al. Loc2Vec-based cluster-level transition behavior mining for successive POI recommendation[J]. IEEE Access,2019,7:109311-109319. DOI:10.1109/ACCESS.2019.2931075.
[24]郭旦怀,张鸣珂,贾楠,等. 融合深度学习技术的用户兴趣点推荐研究综述[J]. 武汉大学学报(信息科学版),2020,45(12):1890-1902. DOI:10.13203/j.whugis20200334.
[25]LI X X,SUI P P,BAI Y,et al. M-generalization for multipurpose transcational data publication[J]. Frontiers of Computer Science,2018,12(6):1241-1254. DOI:10.1007/s11704-016-6061-x.
[26]WADHWA S,AGRAWAL S,CHAUDHARI H,et al. Data poisoning attacks against differentially private recommender systems[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York,NY:Association for Computing Machinery,2020:1617-1620. DOI:10.1145/3397271.3401301.
[27]WANG W Q,LIU A,LI Z X,et al. Protecting multi-party privacy in location-aware social point-of-interest recommendation[J].World Wide Web, 2019,22(2):863-883. DOI:10.1007/s11280-018-0550-9.
[28]张青云,张兴,李万杰,等. 基于差分隐私保护的兴趣点推荐算法设计[J]. 计算机应用与软件,2019,36(9):243-248,269. DOI:10.3969/j.issn.1000-386x.2019.09.043.
[29]沈鑫娣,翟东君,张得天,等. 基于LSH的隐私保护POI推荐算法[J]. 计算机工程,2019,45(1):96-102. DOI:10.19678/j.issn.1000-3428.0049731.
[30]CHEN C C,LIU Z Q,ZHAO P L,et al. Privacy preserving point-of-interest recommendation using decentralized matrix factorization[C]// Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence. Palo Alto,CA:AAAI Press,2018:257-264.
[31]彭佳. 隐私保护的兴趣点推荐系统研究[D]. 苏州:苏州大学,2019. DOI:10.27351/d.cnki.gszhu.2019.000828.
[32]XING S N,LIU F A,WANG Q Q,et al. Content-aware point-of-interest recommendation based on convolutional neural network[J]. Applied Intelligence,2019,49(3):858-871. DOI:10.1007/s10489-018-1276-1.
[33]WU S W,ZHANG Y X,GAO C L,et al. GARG:anonymous recommendation of point-of-interest in mobile networks by graph convolution network[J]. Data Science and Engineering,2020,5(4):433-447. DOI:10.1007/s41019-020-00135-z.
[34]GAO H J,TANG J L,HU X,et al. Content-aware point of interest recommendation on location-based social networks[J]. Proceedings of the AAAI Conference on Artificial Intelligence,2015,29(1):1721-1727. DOI:10.1609/aaai.v29i1.9462.
[35]WANG L E,WANG Y H,BAI Y,et al. POI recommendation with federated learning and privacy preserving in cross domain recommendation[C]// IEEE INFOCOM 2021-IEEE Conference on Computer Communications Workshops(INFOCOM WKSHPS). Piscataway,NJ:IEEE,2021:1-6. DOI:10.1109/INFOCOMWKSHPS51825.2021.9484510.
[1] WANG Yuhang, ZHANG Canlong, LI Zhixin, WANG Zhiwen. Image Captioning According to User’s Intention and Style [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 91-103.
[2] LI Zhengguang, CHEN Heng, LIN Hongfei. Identification of Adverse Drug Reaction on Social Media Using Bi-directional Language Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 40-48.
[3] WAN Liming, ZHANG Xiaoqian, LIU Zhigui, SONG Lin, ZHOU Ying, LI Li. CT Image Segmentation of UNet Pulmonary Nodules Based on Efficient Channel Attention [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 66-75.
[4] ZHANG Ping, XU Qiaozhi. Segmentation of Lung Nodules Based on Multi-receptive Field and Grouping Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 76-87.
[5] WU Jun, OUYANG Aijia, ZHANG Lin. Phosphorylation Site Prediction Model Based on Multi-head Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 161-171.
[6] LI Weiyong, LIU Bin, ZHANG Wei, CHEN Yunfang. An Automatic Summarization Model Based on Deep Learning for Chinese [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 51-63.
[7] WANG Jian, ZHENG Qifan, LI Chao, SHI Jing. Remote Supervision Relationship Extraction Based on Encoder and Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 53-60.
[8] WU Wenya,CHEN Yufeng,XU Jin’an,ZHANG Yujie. High-level Semantic Attention-based Convolutional Neural Networks for Chinese Relation Extraction [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 32-41.
[9] YUE Tianchi, ZHANG Shaowu, YANG Liang, LIN Hongfei, YU Kai. Stance Detection Method Based on Two-Stage Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 42-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIN Yue. The Fault Diagnosis of Charging Piles Based on Hybrid AP-HMM Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 25 -33 .
[2] DING Xiao-jian, DING Ran. Battle Scheme Evaluation Index Selection Based on SVR-RFE[J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(4): 43 -48 .
[3] LIANG Shi-chu, TIAN Hua-li, TIAN Feng, XIA Yi, QIN Ying-ying. Wetland Vegetation Types and Their Distribution Characteristics in Lijiang River[J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(4): 115 -119 .
[4] XU Jiu-cheng, LI Xiao-yan, LI Shuang-qun, ZHANG Ling-jun. Feature Images Retrieval Method of Tolerance Granular-basedMulti-level Texture[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 186 -187 .
[5] CHEN Mei-hong, YANG Cui-hong, LI Chuan-qi. Influence of Geosynchronous Satellites on Earth Rotation Angular Velocity and Coriolis Force[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 6 -9 .
[6] LI Meng, CAO Qingxian, HU Baoqing. Spatial-temporal Analysis of Continental Coastline Migration from 1960 to 2018 in Guangxi, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 99 -108 .
[7] HU Lening, LI Shuangli, LI Yang, WEI Yizhuang, ZHOU Jinling, SU Yirong, DENG Hua. Effect of Improved Calcium Peroxide on Organic Carbon Mineralization in Gleyed Paddy Soil[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 158 -169 .
[8] ZHAO Dongjiang, MA Songyan, TIAN Xiqiang. Applications of CoSe2/C Catalyst in Electrocatalytic Oxygen Reduction[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 30 -43 .
[9] HOU Qianqian, FANG Zhigang, QIN Yu, ZHU Yiwen. Study on the Polarization of Fe4P Clusters[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 140 -146 .
[10] BAI Defa, XU Xin, WANG Guochang. Review of Generalized Linear Models and Classification for Functional Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 15 -29 .