Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (1): 76-86.doi: 10.16088/j.issn.1001-6600.2022030402

Previous Articles     Next Articles

Detection Method of Mask Wearing in Public Places Based on YOLOv3

WEI Mingjun1,2*, ZHOU Taiyu1, JI Zhanlin1,2, ZHANG Xinnan1   

  1. 1. College of Artificial Intelligence, North China University of Science and Technology, Tangshan Hebei 063210, China;
    2. Hebei Provincial Key Laboratory of Industrial Intelligent Perception, North China University of Science and Technology, Tangshan Hebei 063210, China
  • Received:2022-03-04 Revised:2022-04-18 Online:2023-01-25 Published:2023-03-07

Abstract: Aiming at the problem of low detection accuracy due to the large number of small-scale targets in the detection of masks worn by people in public places, the feature pyramid structure of YOLOv3 is improved by the method in this paper. Firstly, the rich location information of the low-level feature map is transmitted to the middle-level and high-level feature map by using the jump connection and the location feature enhancement module LFE containing channel attention, so as to strengthen the recognition of small targets. Secondly, the bounding box regression using the CIoU loss function improves the positioning accuracy of the algorithm. In addition, nonstandard wearing of masks is also detected. The experimental results show that on the self-made mask wearing dataset, the mAP of the improved YOLOv3 algorithm reaches 86.96%, which is 3.30% higher than that of the YOLOv3 algorithm. The result is also better than those of the mainstream algorithms such as Faster R-CNN, SSD300, DSSD321 and YOLOv4. The detection speed FPS of the algorithm reaches 39.2 frame/s, which is only 2.2 frame/s lower than that of YOLOv3, meeting the requirements of real-time detection.

Key words: YOLOv3 algorithm, mask wearing detection, small-scale targets, channel attention, multiscale fusion, loss function

CLC Number: 

  • TP391.41
[1] 张旭,董亚琼. 新冠肺炎(COVID-19)的致死率分析与治疗对策[J]. 基因组学与应用生物学,2020,39(9):4405-4408. DOI:10.13417/j.gab.039.004405.
[2]张修宝,林子原,田万鑫,等. 全天候自然场景下的人脸佩戴口罩识别技术[J]. 中国科学:信息科学,2020,50(7):1110-1120. DOI:10.1360/SSI-2020-0046.
[3]荣誉. 基于YOLOv3的人脸佩戴口罩检测改进算法[D]. 南宁:广西大学,2021.DOI:10.27034/d.cnki.ggxiu.2021.001442.
[4]GIRSHICK R,DONAHUE J,DARRELL T,et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos,CA:IEEE Computer Society,2014:580-587. DOI:10.1109/CVPR.2014.81.
[5]GIRSHICK R. Fast R-CNN[C]// 2015 IEEE International Conference on Computer Vision. Los Alamitos,CA:IEEE Computer Society,2015:1440-1448. DOI:10.1109/ICCV.2015.169.
[6]REN S Q,HE K M,GIRSHICK R,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(6):1137-1149. DOI:10.1109/TPAMI.2016.2577031.
[7]HE K M,GKIOXARI G,DOLL R P,et al. Mask R-CNN[C]// 2017 IEEE International Conference on Computer Vision(ICCV). Los Alamitos,CA:IEEE Computer Society,2017:2980-2988. DOI:10.1109/ICCV.2017.322.
[8]REDMON J,FARHADI A. YOLO9000:better,faster,stronger[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Los Alamitos,CA:IEEE Computer Society,2017:6517-6525. DOI:10.1109/CVPR.2017.690.
[9]REDMON J,DIVVALA S,GIRSHICK R,et al. You only look once:unified,real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Los Alamitos,CA:IEEE Computer Society,2016:779-788. DOI:10.1109/cvpr.2016.91.
[10]REDMON J,FARHADI A. YOLOv3:an incremental improvement[EB/OL].(2018-04-08)[2022-03-04]. https://arxiv.org/abs/1804.02767. DOI:10.48550/arXiv.1804.02767.
[11]BOCHKOVSKIY A,WANG C Y,LIAO H Y M. YOLOv4:optimal speed and accuracy of object detection[EB/OL].(2020-04-23)[2022-03-04]. https://arxiv.org/abs/2004.10934. DOI:10.48550/arXiv.2004.10934.
[12]LIU W,ANGUELOV D,ERHAN D,et al. SSD:single shot multibox detector[C]// Computer Vision-ECCV 2016:LNCS Volume 9905. Cham:Springer International Publishing AG,2016:21-37. DOI:10.1007/978-3-319-46448-0_2.
[13]FU C Y,LIU W,RANGA A,et al. DSSD:deconvolutional single shot detector[EB/OL].(2017-01-23)[2022-03-04]. https://arxiv.org/abs/1701.06659. DOI:10.48550/arXiv.1701.06659.
[14]张琴涛. 基于改进YOLOv3的口罩佩戴检测算法研究[D]. 天津:天津工业大学,2021.DOI:10.27357/d.cnki.gtgyu.2021.000069.
[15]曹城硕,袁杰. 基于YOLO-Mask算法的口罩佩戴检测方法[J]. 激光与光电子学进展,2021,58(8):0810019. DOI:10.3788/LOP202158.0810019.
[16]曾成,蒋瑜,张尹人. 基于改进YOLOv3的口罩佩戴检测方法[J]. 计算机工程与设计,2021,42(5):1455-1462. DOI:10.16208/j.issn1000-7024.2021.05.035.
[17]张路达,邓超. 多尺度融合的YOLOv3人群口罩佩戴检测方法[J]. 计算机工程与应用,2021,57(16):283-290. DOI:10.3778/j.issn.1002-8331.2103-0505.
[18]王艺皓,丁洪伟,李波,等. 复杂场景下基于改进YOLOv3的口罩佩戴检测算法[J]. 计算机工程,2020,46(11):12-22. DOI:10.19678/j.issn.1000-3428.0058802.
[19]程可欣,王玉德. 基于改进YOLOv3的自然场景人员口罩佩戴检测算法[J]. 计算机系统应用,2021,30(2):231-236. DOI:10.15888/j.cnki.csa.007788.
[20]LIN T Y,DOLLR P,GIRSHICK R,et al. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Los Alamitos,CA:IEEE Computer Society,2017:936-944. DOI:10.1109/CVPR.2017.106.
[21]卢伟. 基于深度学习的无人机航拍图像目标检测[D]. 厦门:厦门大学,2019.
[22]HU J,SHEN L,SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Los Alamitos,CA:IEEE Computer Society,2018:7132-7141. DOI:10.1109/cvpr.2018.00745.
[23]WOO S,PARK J,LEE J Y,et al. CBAM:convolutional block attention module[C]// Computer Vision-ECCV 2018:LNCS Volume 11211. Cham:Springer,2018:3-19. DOI:10.1007/978-3-030-01234-2_1.
[24]陈科圻,朱志亮,邓小明,等. 多尺度目标检测的深度学习研究综述[J]. 软件学报,2021,32(4):1201-1227. DOI:10.13328/j.cnki.jos.006166.
[25]WANG K X,LIEW J H,ZOU Y T,et al. PANet:few-shot image semantic segmentation with prototype alignment[C]// 2019 IEEE/CVF International Conference on Computer Vision(ICCV). Los Alamitos,CA:IEEE Computer Society,2019:9196-9205. DOI:10.1109/ICCV.2019.00929.
[26]YI L,WANG C J,LI F Z,et al. TFPN:twin feature pyramid networks for object detection[C]// 2019 IEEE 31st International Conference on Tools with Artificial Intelligence(ICTAI). Los Alamitos,CA:IEEE Computer Society,2019:1702-1707. DOI:10.1109/ictai.2019.00251.
[27]PANG J M,CHEN K,SHI J P,et al. Libra R-CNN:towards balanced learning for object detection[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Los Alamitos,CA:IEEE Computer Society,2019:821-830. DOI:10.1109/CVPR.2019.00091.
[28]ZHENG Z H,WANG P,LIU W,et al. Distance-IoU loss:faster and better learning for bounding box regression[J]. Proceedings of the AAAI Conference on Artificial Intelligence,2020,34(7):12993-13000. DOI:10.1609/aaai.v34i07.6999.
[29]WANG Z Y,WANG G C,HUANG B J,et al. Masked face recognition dataset and application[EB/OL].(2020-03-23)[2022-03-04]. https://arxiv.org/abs/2003.09093. DOI: 10.48550/arXiv.2003.09093.
[30]YANG S,LUO P, LOY C C,et al. WIDER FACE:a face detection benchmark[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Los Alamitos,CA:IEEE Computer Society,2016:5525-5533. DOI:10.1109/CVPR.2016.596.
[31]LIN T Y,MAIRE M,BELONGIE S,et al. Microsoft COCO:common objects in context[C]// Computer Vision-ECCV 2014:LNCS Volume 8693. Cham:Springer,2014:740-755. DOI:10.1007/978-3-319-10602-1_48.
[32]牛作东,覃涛,李捍东,等. 改进RetinaFace的自然场景口罩佩戴检测算法[J]. 计算机工程与应用,2020,56(12):1-7. DOI:10.3778/j.issn.1002-8331.2002-0402.
[1] ZHANG Wenlong, NAN Xinyuan. Road Vehicle Tracking Algorithm Based on Improved YOLOv5 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 49-57.
[2] LIN Yuan, LIU Haifeng, LIN Hongfei, XU Kan. Group Ranking Methods with Loss Function Incorporation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 62-70.
[3] DING Xin-yue, XU Mei-ping. Bayesian Estimation for Scale Parameter of Inverse Gamma Distribution under Mlinex Loss Function [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(3): 61-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHENG Wei,WEN Guoqiu,HE Wei,HU Rongyao,ZHAO Shuzhi. Low-rank Unsupervised Feature Selection Based on Self-representation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 61 -69 .
[2] LIANG Shi-chu, TIAN Hua-li, TIAN Feng, XIA Yi, QIN Ying-ying. Wetland Vegetation Types and Their Distribution Characteristics in Lijiang River[J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(4): 115 -119 .
[3] XU Jiu-cheng, LI Xiao-yan, LI Shuang-qun, ZHANG Ling-jun. Feature Images Retrieval Method of Tolerance Granular-basedMulti-level Texture[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 186 -187 .
[4] CHENG Rui, HE Mingxian, ZHONG Chunying, LUO Shuyi, WU Zhengjun. Comparison of Swimming Ability between Wild and Captive Breeding Shinisaurus crocodilurus[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(1): 79 -86 .
[5] CHEN Danni, CHEN Zhilin, ZHOU Shanyi. A Checklist of Family Formicidae of China: Myrmecinae (Addendum) (Insect: Hymenoptera)[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(1): 87 -97 .
[6] LUO Shuyi, LI Yongtai, WU Zhengjun, CHENG Rui, CHEN Yaohuan, HE Jiasong. Influencing Factors of Perch Height of Shinisaurus crocodilurus in Daguishan Mountain, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 182 -189 .
[7] SHAO Yufu, JI Tingting, YAO Yichen, WEN Binghai. Research on Measurement Algorithm of Contact Angle on Curved Surface Based on Lattice Boltzmann Method[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 44 -53 .
[8] ZHANG Shiyan, XIE Qiang, HUANG Lijuan, HUANG Qing, FENG Xueyu, SU Hualong. Niche Analysis of Main Populations in Cyclobalanopsis glauca Community in Lingqu Basin of Guangxi, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 162 -173 .
[9] GUO Jiabao, BI Shuoben, QIU Xiangkai, ZHANG Li. Spatial and Temporal Analysis of Droughts and Floods in the Three Provinces of Northeast China in Qing Dynasty[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 183 -196 .
[10] BAI Defa, XU Xin, WANG Guochang. Review of Generalized Linear Models and Classification for Functional Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 15 -29 .