Journal of Guangxi Normal University(Natural Science Edition) ›› 2021, Vol. 39 ›› Issue (6): 183-196.doi: 10.16088/j.issn.1001-6600.2020113004

Previous Articles    

Spatial and Temporal Analysis of Droughts and Floods in the Three Provinces of Northeast China in Qing Dynasty

GUO Jiabao1, BI Shuoben1,2*, QIU Xiangkai1, ZHANG Li1   

  1. 1. Institute of Science and Technology History, Nanjing University of Information Science and Technology, Nanjing Jiangsu 210044, China;
    2. School of Geographical Sciences, Nanjing University of Information Science and Technology, Nanjing Jiangsu 210044, China
  • Received:2020-11-30 Revised:2021-03-19 Online:2021-11-25 Published:2021-12-08

Abstract: Based on the historical literature from 1650 to 1911 in Qing Dynasty, this paper evaluates the drought and waterlogging disasters in the three provinces of Northeast China, and analyzes the mutagenicity characteristics of drought and waterlogging time series by means of sliding average and cumulative anomaly method. Ensemble empirical mode decomposition (EEMD) was used to study the periodic characteristics of drought and flood disasters in the three provinces of Northeast China in the Qing Dynasty. By analyzing the rate and frequency of drought and flood disasters, using the inverse distance weight (IDW) method and calculating the average annual drought and flood disaster ratio of the three provinces of Northeast China, the spatial distribution of drought and flood disasters in the three provinces of Northeast China in the Qing Dynasty were studied. The results showed that the number of droughts and floods in the three northeastern provinces in the Qing Dynasty was less and alternating, and the number of floods was more than that of droughts. The periodic characteristics of drought and flood disasters of the three provinces of Northeast China in the Qing Dynasty can be roughly divided into two drought periods and two flood periods. The changes in drought and flood disasters were quasi 3 a, quasi 7 a interannual cycle, quasi 22 a, quasi 29 a interdecadal cycle, and quasi 87 a in the cycle. In the Qing Dynasty, the spatial distribution of drought and flood disasters in the three provinces of Northeast China was uneven. The frequency of drought and flood disasters increased from north to south and was mainly concentrated in Liaoning Province.

Key words: drought and flood disasters, space-time characteristics, three provinces of Northeast China, Qing Dynasty, EEMD

CLC Number: 

  • P92
[1] 胡娜娜.东北三省旱涝时空演变及趋势判断[D].西安:陕西师范大学,2013.
[2] 张颖.基于地理信息系统的气象数据时空挖掘研究[D].大连:大连理工大学,2012.
[3] 杨晓静, 徐宗学, 左德鹏, 等. 东北三省近55 a旱涝时空演变特征[J]. 自然灾害学报, 2016, 25(4): 9-19. DOI:10.13577/j.jnd.2016.0402.
[4] 魏琳, 鞠敏睿, 徐金忠. 东北黑土区近500多年旱涝灾害变化[J]. 黑龙江水利, 2017, 3(8): 23-27.
[5] 韩晓敏, 延军平. 气候暖干化背景下东北地区旱涝时空演变特征[J]. 水土保持通报, 2015, 35(4): 314-318. DOI:10.13961/j.cnki.stbctb.2015.04.055.
[6] 孙力, 安刚, 廉毅, 等. 中国东北地区夏季旱涝的大气环流异常特征[J]. 气候与环境研究, 2002,7(1): 102-113.
[7] 陈晶, 杨帆, 田宝星. 黑龙江省1971—2018年降水时空变化特征[J]. 农技服务, 2020, 37(2): 74-75.
[8] 于佳, 刘吉平. 东北地区旱涝灾害时空动态变化及热点地区[J]. 浙江农业科学, 2014(7): 1088-1091, 1094. DOI:10.16178/j.issn.0528-9017.2014.07.003.
[9] 任宗悦, 刘晓静, 刘家福, 等. 近60年东北地区春玉米旱涝趋势演变研究[J]. 中国生态农业学报(中英文), 2020, 28(2): 179-190. DOI:10.13930/j.cnki.cjea.190684.
[10] 袭祝香, 纪玲玲, 杨雪艳, 等. 松辽流域降水集中指数的时空变化特征[J]. 干旱气象, 2019, 37(6): 885-891.
[11] 李鸿雁, 杨巍, 李峰平. 嫩江流域降水特征时空分布分析[J]. 西北大学学报(自然科学版), 2020, 50(3): 427-437. DOI:10.16152/j.cnki.xdxbzr.2020-03-013.
[12] 邹凯昌.空间数据发掘与知识发现[M].武汉:武汉大学出版社,2000:4-9.
[13] HAN J W,ALTMAN R B, KUMAR V, et al. Emerging scientific applications in data mining[J]. Communications of the ACM, 2002, 45(8): 54-58. DOI:10.1145/545151.545179.
[14] ANDRIENKO G, MALERBA D, MAY M, et al. Mining spatio-temporal data[J]. Journal of Intelligent Information Systems, 2006, 27(3): 187-190.
[15] ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceedings of 2nd International Conference on Knowlwdge Discovery and Data Mining. Oregon, Portland: AAAI Press, 1996: 226-233.
[16] WANG M, WANG A P, LI A B. Mining spatial-temporal clusters from Geo-database[C]//Advanced Data Mining and Applicatians: Second International Conference, ADMA 2006, Xi’an, China. Berlin: Springer, 2006: 263-270.
[17] 广东梅县丙村公社报道组. 卓越的科学家竺可桢同志对我国气象科学的重大贡献[J].气象, 1978(8): 1-4.
[18] 中国气象局气象科学研究院.中国近五百年旱涝分布图集[M].北京:地图出版社,1981.
[19] 张德二, 刘传志. 《中国近五百年旱涝分布图集》续补(1980—1992年) [J].气象, 1993(11): 41-45.
[20] 张德二, 蒋光美.中国三千年气象记录总集[M].南京:凤凰出版社,2004.
[21] 姜彤, 张强, 王苏民. 近1000年长江中下游旱涝与气候变化关系[J]. 第四纪研究, 2004(5): 518-524.
[22] 严华生, 万云霞, 严小冬, 等. 近500年中国旱涝时空分布特征的研究[J]. 云南大学学报(自然科学版), 2004,26(2): 139-143.
[23] 岳杨. 基于LDFAL及SDFAL指数的鞍山地区旱涝急转时空特征分析[J]. 水利规划与设计, 2020(1): 34-39.
[24] 王容, 李相虎, 薛晨阳, 等. 1960—2012年鄱阳湖流域旱涝急转事件时空演变特征[J]. 湖泊科学, 2020, 32(1): 207-222.
[25] 陆苗, 陈翔, 唐鹏, 等. 21世纪全球变暖背景下江淮流域夏季旱涝急转特征分析[J]. 现代农业科技, 2020(14): 184-186, 189.
[26] 高升荣. 清代淮河流域旱涝灾害的人为因素分析[J]. 中国历史地理论丛, 2005,20(3): 80-86.
[27] 杨屹. 清代秦州旱涝灾害时空分布初探[J]. 兰州教育学院学报, 2009, 25(1): 39-43.
[28] 鲁颖, 毕硕本, 刘爱利, 等. 清代1644—1911年期间珠江流域旱涝灾害时空特征分析[J]. 长江流域资源与环境, 2018, 27(12): 2867-2877.
[29] 纪经明. 中教外校阅. 东北地理[M]. [出版地不详] :东北人民政府教育部中等教育处, 1950.
[30] 张宗文.东北地理大纲[M]. 杭州:中华人地舆图学社, 1933.
[31] 许逸超. 东北地理[M]. 南京:正中书局, 1935.
[32] 金毓黻. 东北通史(上编)[M]. 长春:社会科学战线杂志社, 1980.
[33] 李治亭. 东北通史[M]. 郑州:中州古籍出版社, 2003.
[34] 谭其骧. 中国历史地图集[M]. 北京:中国地图出版社,1982.
[35] 温克刚, 孙永罡. 中国气象灾害大典:黑龙江卷[M]. 北京:气象出版社, 2007.
[36] 温克刚, 秦元明. 中国气象灾害大典:吉林卷[M]. 北京:气象出版社, 2008.
[37] 温克刚,李波,孟庆楠. 中国气象灾害大典:辽宁卷[M]. 北京:气象出版社, 2005.
[38] 郑景云,张丕远,周玉孚. 利用早涝县次建立历史时期旱涝指数序列的试验[J]. 地理研究, 1993, 12(3): 1-9
[39] 裴益轩, 郭民. 滑动平均法的基本原理及应用[J]. 火炮发射与控制学报, 2001(1): 21-23. DOI:10.19323/j.issn.1673-6524.2001.01.007.
[40] 魏凤英. 现代气候统计诊断与预测技术[M]. 北京:气象出版社, 1999: 49.
[41] 马尚谦, 张勃, 杨梅, 等. 基于EEMD的华北平原1901—2015年旱涝灾害分析[J]. 干旱区资源与环境, 2019, 33(3): 62-68. DOI:10.13448/j.cnki.jalre.2019.075.
[42] WU Z H, HUANG N E. Ensemble empirical mode decomposition a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.
[43] 万智巍, 贾玉连, 洪祎君, 等. 基于EEMD和EOF的鄱阳湖流域近550 a来旱涝时空变化[J]. 长江流域资源与环境, 2018, 27(4): 919-928.
[44] 徐岩岩, 常军. 基于EEMD方法的河南省倒春寒时空分布分析[J]. 气象与环境科学, 2017, 40(3): 28-32.
[45] 冉伟, 宁静, 陈杨, 等. 基于EEMD-SVD-LTSA的高速列车蛇行演变特征提取框架[J]. 电子测量技术, 2019, 42(5): 1-5. DOI:10.19651/j.cnki.emt.1802194.
[46] 陈仁祥, 汤宝平, 吕中亮. 基于相关系数的EEMD转子振动信号降噪方法[J]. 振动、测试与诊断, 2012, 32(4): 542-546, 685. DOI:10.16450/j.cnki.issn.1004-6801.2012.04.005.
[47] 裴琳, 严中伟, 杨辉. 400多年来中国东部旱涝型变化与太平洋年代际振荡关系[J]. 科学通报, 2015, 60(1) : 97-108.
[48] 韩冬梅, 杨贵羽, 严登华, 等. 近50年东北地区旱涝时空特征分析[J]. 水电能源科学, 2014, 32(6): 5-8.
[49] 刘吉平, 于佳, 赵亮, 等. 东北地区近百年旱涝灾害空间格局变化及影响因素分析[C]//中国灾害防御协会风险分析专业委员会.风险分析和危机反应的创新理论和方法:中国灾害防御协会风险分析专业委员会第五届年会论文集. 北京:中国灾害防御协会风险分析专业委员会, 2012: 197-202.
[50] 杨贵羽, 韩冬梅, 陈一鸣. 1950—2010年东北地区旱涝演变特征分析[J]. 中国水利, 2014(5): 45-48.
[51] ZHANG Y, MEYERS P A, GAO C Y. Holocene climate change in Northeastern China reconstructed from lipid biomarkers in a peat sequence from the Sanjiang Plain[J]. Organic Geochemistry, 2017, 113: 105-114.
[52] 郑景云, 张学珍, 刘洋, 等. 过去千年中国不同区域干湿的多尺度变化特征评估[J]. 地理学报, 2020, 75(7): 1432-1450.
[53] CHU G Q, SUN Q, XIE M M, et al. Holocene cyclic climatic variations and the role of the Pacific Ocean as recorded in varved sediments from Northeastern China[J]. Quaternary Science Reviews, 2014, 102: 85-95.
[54] 张国宏, 李智才, 宋燕, 等. 中国降水量变化的空间分布特征与东亚夏季风[J]. 干旱区地理, 2011, 34(1): 34-42.
[55] 赵宗慈, 罗勇. 21世纪中国东北地区气候变化预估[J]. 气象与环境学报, 2007, 23(3): 1-4.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HU Jinming, WEI Duqu. Hybrid Projective Synchronization of Fractional-order PMSM with Different Orders[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 1 -8 .
[2] WU Kangkang, ZHOU Peng, LU Ye, JIANG Dan, YAN Jianghong, QIAN Zhengcheng, GONG Chuang. FIR Equalizer Based on Mini-batch Gradient Descent Method[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 9 -20 .
[3] LIU Dong, ZHOU Li, ZHENG Xiaoliang. A Very Short-term Electric Load Forecasting Based on SA-DBN[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 21 -33 .
[4] ZHANG Weibin, WU Jun, YI Jianbing. Research on Feature Fusion Controlled Items Detection Algorithm Based on RFB Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 34 -46 .
[5] WANG Jinyan, HU Chun, GAO Jian. An OBDD Construction Method for Knowledge Compilation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 47 -54 .
[6] LU Miao, HE Dengxu, QU Liangdong. Grey Wolf Optimization Algorithm Based on Elite Learning for Nonlinear Parameters[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 55 -67 .
[7] LI Lili, ZHANG Xingfa, LI Yuan, DENG Chunliang. Daily GARCH Model Estimation Using High Frequency Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 68 -78 .
[8] LI Songtao, LI Qunhong, ZHANG Wen. Co-dimension-two Grazing Bifurcation and Chaos Control of Three-degree-of-freedom Vibro-impact Systems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 79 -92 .
[9] ZHAO Hongtao, LIU Zhiwei. Decompositions of λ-fold Complete Bipartite 3-uniform Hypergraphs λK(3)n,n into Hypergraph Triangular Bipyramid[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 93 -98 .
[10] LI Meng, CAO Qingxian, HU Baoqing. Spatial-temporal Analysis of Continental Coastline Migration from 1960 to 2018 in Guangxi, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 99 -108 .