Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (5): 388-397.doi: 10.16088/j.issn.1001-6600.2022022801

Previous Articles     Next Articles

Research Progress of Biocontrol Microorganisms of Citrus Canker

LI Qicong1,2,3,4, JIN Qiuzhu1,2,3,4, LUO Haiyu1,2,3,4*, YAN Zhenling1,2,3,4, DENG Yecheng1,2,3,4*, DENG Zhiyong1,2,3,4   

  1. 1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    2. Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin (Guangxi Normal University), Guilin Guangxi 541006, China;
    3. Guangxi Key Laboratory of Rare and Endangered Animal Ecology (Guangxi Normal University), Guilin Guangxi 541006, China;
    4. Institute for Sustainable Development and Innovation(Guangxi Normal University), Guilin Guangxi 541006, China
  • Received:2022-02-28 Revised:2022-04-27 Online:2022-09-25 Published:2022-10-18

Abstract: Citrus canker disease is one of the important diseases in citrus production. Microbial control has unique advantages in the prevention and control of citrus canker disease, which can not only reduce the occurrence of the disease, but also be safe and pollution-free to the environment. Based on the analysis of the literatures about microbiological control on this disease in the past 20 years, it was found that its microbial prevention still mainly focused on the screening and identification of biocontrol bacteria in the laboratory, in which the species from bacillus and the control effect of single bacterium had been mostly reported. The main application methods were live strains or bacterial agents. While the study of the mechanism and identification of antibacterial active substances are rarely reported. There is still great potential for the development of biocontrol fungi and phages. In a word, resources, action mechanism and field application of biocontrol microorganisms for the control of citrus canker disease need to be further studied.

Key words: citrus canker, Bacillus sp., Pseudomonas sp., biocontrol microorganisms

CLC Number: 

  • S476.1
[1]姚廷山, 周彦, 周常勇. 柑橘溃疡病菌分化及防治研究进展[J]. 园艺学报, 2015, 42(9): 1699-1706. DOI: 10.16420/j.issn.0513-353x.2015-0128.
[2]YOUNG M, OZCAN A, MYERS M E, et al. Multimodal generally recognized as safe ZnO/nanocopper composite: a novel antimicrobial material for the management of citrus phytopathogens[J]. Journal of Agricultural and Food Chemistry, 2018, 66(26): 6604-6608. DOI: 10.1021/acs.jafc.7b02526.
[3]GOTTWALD T R, SUN X Y, RILEY T, et al. Geo-referenced spatiotemporal analysis of the urban citrus canker epidemic inflorida[J]. Phytopathology, 2002, 92(4):361-377. DOI: 10.1094/phyto.2002.92.4.361.
[4]SCHUBERT T S, SUN X. Bacterial citrus canker[J]. Plant Pathology Circular, 2003, 377: 1-6.
[5]SHUAI J B, GUAN F Y, HE B, et al. Self-assembled nanoparticles of symmetrical cationic peptide against citrus pathogenic bacteria[J]. Journal of Agricultural and Food Chemistry, 2019, 67(20): 5720-5727. DOI: 10.1021/acs.jafc.9b00820.
[6]陈仁强, 林培, 林树政. 海南琼中绿橙溃疡病田间药剂防治试验初报[J]. 农业科技通讯, 2018(7): 140-141.
[7]赵洪涛, 陈东奎, 陈香玲, 等. 沃柑溃疡病病原菌分离鉴定及防治药剂筛选[J]. 南方农业学报, 2019, 50(12): 2703-2712.
[8]岑铭松, 顾渊, 马海杰, 等. 壳聚糖和2株芽孢杆菌对柑橘溃疡病菌的杀菌效果评价[J]. 植物检疫, 2017, 31(5): 15-20.
[9]杨瑞先, 蔡学清, 范晓静, 等. 内生芽孢杆菌防治植物病害的应用及作用机制研究进展[J]. 武夷科学, 2012, 28: 106-113. DOI: 10.3969/j.issn.1001-4276.2012.01.018.
[10]杜春梅. 芽孢杆菌在农业中的研究与应用[M]. 哈尔滨: 黑龙江大学出版社, 2013.
[11]DAS R, MONDAL B, MONDAL P, et al. Biological management of citrus canker on acid lime through Bacillus subtilis (S-12) in West Bengal, India[J]. Journal of Biopesticides, 2014, 7(Supplement): 38-41.
[12]DAUNGFU O, YOUPENSUK S, LUMYONG S. Endophytic bacteria isolated from citrus plants for biological control of citrus canker in lime plants[J]. Tropical Life Sciences Research, 2019, 30(1): 73-88. DOI: 10.21315/tlsr2019.30.1.5.
[13]陈娇梅, 蔡学清, 邱思鑫, 等. 柑橘溃疡病生防细菌的分离鉴定[J]. 热带作物学报, 2014, 35(7): 1398-1403. DOI: 10.3969/j.issn.1000-2561.2014.07.025.
[14]陈力, 王中康, 黄冠军, 等. 柑橘溃疡病生防菌株CQBS03的鉴定及其培养特性研究[J]. 中国农业科学, 2008, 41(8): 2537-2545.
[15]赖家豪, 宋水林, 刘冰. 三株柑橘溃疡病生防内生细菌对脐橙感染溃疡病后几种防御酶活性的影响[J]. 浙江农业学报, 2020, 32(11): 1994-2000. DOI: 10.3969/j.issn.1004-1524.2020.11.09.
[16]COMPANT S, DUFFY B, NOWAK J, et al. Use of plant growth-promoting bacteria for biocontrol of plant disease: principle, mechanism of action, and future prospects[J]. Applied and Environmental Microbiology, 2005, 71(9): 4951-4959. DOI: 10.1128/AEM.71.9.4951-4959.2005.
[17]DE OLIVEIRA A G, MURATE L S, SPAGO F R, et al. Evaluation of the antibiotic activity of extracellular compounds produced by the Pseudomonas strain against the Xanthomonas citri pv. citri 306 strain[J]. Biological Control, 2011, 56(2): 125-131. DOI: 10.1016/j.biocontrol.2010.10.008.
[18]DE OLIVEIRA A G, SPAGO F R, SIMIONATO A S, et al. Bioactive organocopper compound from Pseudomonas aeruginosa inhibits the growth of Xanthomonas citri subsp. citri[J]. Frontiers in Microbiology, 2016, 7: 113. DOI: 10.3389/fmicb.2016.00113.
[19]SPAGO F R, MAURO C S I, OLIVEIRA A G, et al. Pseudomonas aeruginosa produces secondary metabolites that have biological activity against plant pathogenic Xanthomonas species[J]. Crop Protection, 2014, 62: 46-54. DOI: 10.1016/j.cropro.2014.04.011.
[20]ADLER C, CORBALÖN N S, SEYEDSAYAMDOST M R, et al. Catecholate siderophores protect bacteria from pyochelin toxicity[J]. PLoS One, 2012, 7(10): e46754. DOI: 10.1371/journal.pone.0046754.
[21]ADLER C, MICHAVILA G, LOPEZFE, et al. Canker control by the siderophore pyochelin from Pseudomonas fluorescens[J]. Acta Horticulturae, 2015, 1065: 937-945. DOI: 10.17660/ActaHortic.2015.1065.117.
[22]MICHAVILA G, ADLER C, DE GREGORIO P R, et al. Pseudomonas protegens CS1 from the lemon phyllosphere as a candidate for citrus canker biocontrol agent[J]. Plant Biology, 2017, 19(4): 608-617. DOI: 10.1111/plb.12556.
[23]金颖, 胡洪波, 张雪洪, 等. 假单胞菌产生的抗生素研究[J]. 上海农业学报, 2005, 21(3): 106-109. DOI: 10.3969/j.issn.1000-3924.2005.03.025.
[24]张洪波, 巢进, 王跃强, 等. 柑橘溃疡病拮抗菌的分离筛选及其田间防效[J]. 湖南农业大学学报(自然科学版), 2007,33(5): 605-607.
[25]GHOLAMI D, GOODARZI T, AMINZADEH S, et al. Bacterial secretome analysis in hunt for novel bacteriocins with ability to control Xanthomonas citri subsp citri[J]. Iranian Journal of Biotechnology, 2015, 13(3): 10-19. DOI: 10.15171/ijb.1123.
[26]QIAN J L, ZHANG T, TANG S, et al. Biocontrol of citrus canker with endophyte Bacillus amyloliquefaciens QC-Y[J]. Plant Protection Science, 2021, 57(1): 1-13. DOI: 10.17221/62/2020-PPS.
[27]SUDYOUNG N, TOKUYAMA S, KRAJANGSANG S, et al. Bacterial antagonists and their cell-free cultures efficiently suppress canker disease in citrus lime[J]. Journal of Plant Diseases and Protection, 2020, 127(2): 173-181. DOI: 10.100 7/s41348-019-00295-9.
[28]SLAM M N, ALI M S, CHOI S I, et al. Biocontrol of citrus canker disease caused by Xanthomonas citri subsp. citri using an endophytic Bacillus thuringiensis[J]. The Plant Pathology Journal, 2019, 35(5): 486-497. DOI: 10.5423/PPJ.OA.03.2019.0060.
[29]吴明琼. 柑橘溃疡病菌拮抗细菌筛选和药剂防治试验[D]. 南宁: 广西大学, 2018.
[30]宋水林. 柑橘溃疡病菌生防内生细菌的筛选、鉴定及防效研究[D]. 南昌: 江西农业大学, 2018.
[31]唐满仓, 沈小英, 马玉明, 等. 一种甲基营养性芽孢杆菌的可湿性粉剂及其制备方法: CN201210579898.3[P].2013-12-11.
[32]HUANG T P, TZENG D D S, WONG A C L, et al. DNA polymorphisms and biocontrol of Bacillus antagonistic to citrus bacterial canker with indication of the interference of phyllosphere bioflms[J]. PLoS One, 2012, 7(7): e42124. DOI: 10.1371/journal.pone.0042124.
[33]易龙. 拮抗柑橘溃疡病内生细菌的筛选及鉴定[C]// 中国植物病理学会2012年学术年会论文集. 北京: 中国农业科学技术出版社, 2012: 380.
[34]谭小艳, 黄思良, 晏卫红, 等. 柑橘溃疡病菌的拮抗细菌Bv10的研究[J]. 广西农业生物科学, 2006,25(3): 229-234.
[35]MURATE L S, DE OLIVEIRA A G, HIGASHI A Y, et al. Activity of secondary bacterial metabolites in the control of citrus canker[J]. Agricultural Sciences, 2015, 6(3): 295-303. DOI: 10.4236/as.2015.63030.
[36]AI-SALEH, MOHAMMED A. Evaluation of saudi fluorescent pseudomonads isolates as a biocontrol agent against citrus canker disease caused by Xanthomonas citri subsp citri A*[J]. Egyptian Academic Journal of Biological Sciences, G. Microbiology, 2014, 6(2): 1-7. DOI: 10.21608/EAJBSG.2014.16493.
[37]董玉兰. 湖南省柑橘溃疡病菌系分化及拮抗菌筛选[D]. 长沙: 湖南农业大学, 2012.
[38]罗葵. 柑橘溃疡病菌拮抗菌株的筛选及鉴定[D]. 长沙: 湖南农业大学, 2015.
[39]SHRESTHA A, CHOI K U, LIM C K, et al. Antagonistic effect of Lactobacillus sp. strain KLF01 against plant pathogenic bacteria Ralstonia solanacearum[J]. The Korean Journal of Pesticide Science. 2009, 13(1): 45-53.
[40]谭小艳, 黄思良, 任建国, 等. 柑桔溃疡病生防细菌Bt8的研究[J]. 微生物学报, 2006, 46(2): 292-296. DOI: 10.3321/j.issn:0001-6209.2006.02.025.
[41]张一宾. 由植物中放线菌产生的植物生理活性物质[J]. 世界农药, 2003, 25(1): 9-12,8.
[42]WATTANA-AMORN P, CHAROENWONGSA W, WILLIAMS C, et al. Antibacterial activity of cyclo (L-Pro-L-Tyr) and cyclo (D-Pro-L-Tyr) from Streptomyces sp. strain 22-4 against phytopathogenic bacteria[J]. Natural Product Research, 2016, 30(17): 1980-1983. DOI: 10.1080/14786419.2015.1095747.
[43]马冠华, 杨镜祯, 易龙, 等. 柑橘溃疡病拮抗放线菌筛选及其抑菌机理研究[J]. 安徽农业科学, 2014, 42(30): 10547-10549,10589. DOI: 10.3969/j.issn.0517-6611.2014.30.042.
[44]赵帅, 韩奉娟, 雍道敬, 等. 一种含喹唑啉酮和春雷霉素的杀菌剂及其在防治植物病害中的应用: CN202011453914.5[P]. 2021-03-19.
[45]宋永相, 杨佳凡, 赖添财, 等. 深海放线菌生物制剂在制备预防柑橘溃疡疾病药物中的应用: CN202010048059.3[P]. 2020-11-10.
[46]高嫚妮, 潘忠成, 高波, 等. 银杏林土壤放线菌分离鉴定及对植物病原菌的拮抗作用研究[J]. 农业与技术, 2019, 39(24): 6-10.
[47]姚廷山, 周常勇, 胡军华, 等. 柑橘溃疡病土壤拮抗放线菌的分离及菌株A16初步鉴定[J]. 果树学报, 2014, 31(4): 684-688.
[48]鹿连明, 杜丹超, 蒲占湑,等. 一株对多种植物病原菌具抑菌活性的海洋放线菌: CN201310074115.0[P]. 2014-03-19.
[49]VIEIRA G, PURIC J, MORÃO L G, et al. Terrestrial and marine Antarctic fungi extracts active against Xanthomonas citri subsp. citri[J]. Letters in Applied Microbiology, 2018, 67(1): 64-71. DOI: 10.1111/lam.12890.
[50]VIEIRA G, KHALIL Z G, CAPON R J, et al. Isolation and agricultural potential of penicillic acid against citrus canker[J]. Journal of Applied Microbiology, 2022, 132(4): 3081-3088. DOI: 10.1111/jam.15413.
[51]XIE M M, ZHANG Y C, LIU L P, et al. Mycorrhiza regulates signal substance levels and pathogen defense gene expression to resist citrus canker[J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2019, 47(4): 1161-1167. DOI: 10.15835/nbha47411561.
[52]颜桢灵, 陈洁萍, 农小霞, 等.柑橘内生真菌的分离鉴定及其发酵产物对柑橘溃疡病菌的抑制活性[J]. 广西植物, 2021, 41(7): 1196-1208. DOI: 10.11931/guihaia.Gxzw202002021.
[53]AHMAD A A, ASKORA A, KAWASAKI T, et al. The filamentous phage XacF1 causes loss of virulence in Xanthomonas axonopodis pv. citri, the causative agent of citrus canker disease[J]. Frontiers in Microbiology, 2014, 5: 321-332. DOI: 10.3389/fmicb.2014.00321.
[54]AHMAD A A, OGAWA M, KAWASAKI T, et al. Characterization of bacteriophages Cp1 and Cp2, the strain-typing agents for Xanthomonas axonopodis pv. citri[J]. Applied and Environmental Microbiology, 2014, 80(1): 77-85. DOI: 10.1128/AEM.02310-13.
[55]WAKIMOTO S. Some characteristics of citrus canker bacteria, Xanthomonas citri (Hasse) dowson, and the related phages isolated from Japan[J]. Japanese Journal of Phytopathology, 1967, 33(5): 301-310. DOI: 10.3186/jjphytopath.33.301.
[56]YOSHIKAWA G, ASKORA A, BLANC-MATHIEU R, et al. Xanthomonas citri jumbo phage XacN1 exhibits a wide host range and high complement of tRNA genes[J]. Scientific Reports, 2018, 8(1): 4486. DOI: 10.1038/s41598-018-22239-3.
[57]肖逍, 丁良, 丛郁, 等. 柑橘溃疡病菌噬菌体的分离鉴定[J]. 园艺学报, 2021, 48(12): 2349-2359. DOI: 10.16420/j.issn.0513-353x.2020-0866.
[58]BALOGH B, CANTEROS B I, STALL R E, et al. Control of citrus canker and citrus bacterial spot with bacteriophages[J]. Plant Disease, 2008, 92(7): 1048-1052. DOI: 10.1094/PDIS-92-7-1048.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Xilong, HAN Meng, CHEN Zhiqiang, WU Hongxin, LI Muhang. Survey of Ensemble Classification Methods for Complex Data Stream[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 1 -21 .
[2] TONG Lingchen, LI Qiang, YUE Pengpeng. Research Progress and Prospects of Karst Soil Organic Carbon Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 22 -34 .
[3] TIE Jun, LONG Juanjuan, ZHENG Lu, NIU Yue, SONG Yanlin. Tomato Leaf Disease Recognition Model Based on SK-EfficientNet[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 104 -114 .
[4] WENG Ye, SHAO Desheng, GAN Shu. Principal Component Liu Estimation Method of the Equation    Constrained Ⅲ-Conditioned Least Squares[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 115 -125 .
[5] QIN Chengfu, MO Fenmei. Structure ofC3-and C4-Critical Graphs[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 145 -153 .
[6] HE Qing, LIU Jian, WEI Lianfu. Single-Photon Detectors as the Physical Limit Detections of Weak Electromagnetic Signals[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 1 -23 .
[7] TIAN Ruiqian, SONG Shuxiang, LIU Zhenyu, CEN Mingcan, JIANG Pinqun, CAI Chaobo. Research Progress of Successive Approximation Register Analog-to-Digital Converter[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 24 -35 .
[8] ZHANG Shichao, LI Jiaye. Knowledge Matrix Representation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 36 -48 .
[9] LIANG Yuting, LUO Yuling, ZHANG Shunsheng. Review on Chaotic Image Encryption Based on Compressed Sensing[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 49 -58 .
[10] HAO Yaru, DONG Li, XU Ke, LI Xianxian. Interpretability of Pre-trained Language Models: A Survey[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 59 -71 .