Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (5): 307-323.doi: 10.16088/j.issn.1001-6600.2021122301

Previous Articles     Next Articles

Dynamics and Model Approach for Functional Neurons

MA Jun*   

  1. School of Science, Lanzhou University of Technology, Lanzhou Gansu 730050, China
  • Received:2021-12-23 Revised:2022-01-13 Online:2022-09-25 Published:2022-10-18

Abstract: Biological neuron is the basic unit for signal processing in the nervous system, and its complex anatomical structure and synaptic plasticity enable it’s self-adaption to external stimuli. As a result, its firing modes and pattern become rich and diverse. In different functional regions in brain, these neurons are clustered in networks and they are cooperated to encode all external stimuli. Neurons from different regions of the brain are communicated by triggering synchronous states in and between multi-layer networks, and then the body and organs are guided to behave suitable gaits. The collective electric activities are dependent on the local kinetics, connection links and biophysical properties of the coupling channels, topological types and physical effects as well. Researchers can start possible investigations by building reliable biophysical neuron models, enhancing the controllability of the coupling channels, exploring the energy properties when synchronization stability and pattern formation are regulated in the networks, clarifying the physical mechanism for noise driving, discovering the biophysical mechanism for frequency selection and wave filtering. And these findings can be helpful to recognize the mode response and prevent the occurrence of some neural diseases. This review aims to enhance the biophysical function of an isolated neuron, for example, a variety of electric components are incorporated into branch circuits of a generic nonlinear circuit for detecting and discerning the temperature, illumination, acoustic wave, external magnetic field and electromagnetic radiation, respectively, and different functional neural circuits are obtained. Furthermore, exchange and propagation of field energy in neuron, frequency selection in the auditory neuron and visual neuron, energy pumping and energy consumption in the coupling channel, field energy to Hamilton energy under scale transformation, field coupling synchronization to resonance synchronization, pattern selection and synchronization stability in neural network, are discussed and investigated for possible guidance. These systematic introduction and comments on the functional enhancement of neurons and dynamics in networks have potential guidance and help for further building intelligent functional neuron array and devices.

Key words: memristive neuron, thermosensitive neuron, light-sensitive neuron, piezoelectric neuron, Josephson junction, Hamilton energy, wave filtering

CLC Number: 

  • Q189
[1]CANAVIER C C, CLARK J W, BYRNE J H. Routes to chaos in a model of a bursting neuron[J]. Biophysical Journal, 1990, 57(6): 1245-1251.
[2]BEN ACHOUR S, PASCUAL O. Astrocyte-neuron communication: functional consequences[J]. Neurochemical Research, 2012, 37(11): 2464-2473.
[3]于文婷,张娟,唐军.动态突触、神经耦合与时间延迟对神经元发放的影响[J].物理学报,2017,66(20):200201.
[4]徐泠风,李传东,陈玲.神经元模型对比分析[J].物理学报,2016,65(24):240701.
[5]薛晓丹,王美丽,邵雨竹,等.基于抑制性突触可塑性的神经元放电率自稳态机制[J].物理学报,2019,68(7):078701.
[6]YANG X L, YU Y H, SUN Z K. Autapse-induced multiple stochastic resonances in a modular neuronal network[J]. Chaos, 2017, 27(8): 083117.
[7]YAO C G, HE Z W, NAKANO T, et al. Inhibitory-autapse-enhanced signal transmission in neural networks[J]. Nonlinear Dynamics, 2019, 97(2): 1425-1437.
[8]HERRMANN C S, KLAUS A. Autapse turns neuron into oscillator[J]. International Journal of Bifurcation and Chaos, 2004, 14(2): 623-633.
[9]WANG C N, GUO S L, XU Y, et al. Formation of autapse connected to neuron and its biological function[J]. Complexity, 2017, 2017: 5436737.
[10]任国栋,武刚,马军,等.一类自突触作用下神经元电路的设计和模拟[J].物理学报,2015,64(5):058702.
[11]FOX R F. Stochastic versions of the Hodgkin-Huxley equations[J]. Biophysical Journal, 1997, 72(5): 2068-2074.
[12]NOBLE D. Applications of Hodgkin-Huxley equations to excitable tissues[J]. Physiological Reviews, 1966, 46(1): 1-50.
[13]GONZÀLEZ-MIRANDA J M. Complex bifurcation structures in the Hindmarsh-Rose neuron model[J]. International Journal of Bifurcation and Chaos, 2007, 17(9): 3071-3083.
[14]INNOCENTI G, GENESIO R. On the dynamics of chaotic spiking-bursting transition in the Hindmarsh-Rose neuron[J]. Chaos, 2009, 19(2): 023124.
[15]吴望生,唐国宁.不同耦合下混沌神经元网络的同步[J].物理学报,2012,61(7):070505.
[16]白婧,关富荣,唐国宁.神经元网络中局部同步引发的各种效应[J].物理学报,2021,70(17):170502.
[17]李娜,杨晓丽.空间关联白噪声影响下小世界神经元网络系统的同步动力学[J].物理学报,2015,64(22):220503.
[18]汪芃,李倩昀,黄志精,等.在兴奋—抑制混沌神经元网络中有序波的自发形成[J].物理学报,2018,67(17):170501.
[19]谢盈,朱志刚,张晓锋,等.光电流驱动下非线性神经元电路的放电模式控制[J].物理学报,2021,70(21):210502.
[20]陈军,李春光.具有自适应反馈突触的神经元模型中的混沌:电路设计[J].物理学报,2011,60(5):050503.
[21]BABACAN Y, KAÇAR F, GÜRKAN K. A spiking and bursting neuron circuit based on memristor[J]. Neurocomputing, 2016, 203: 86-91.
[22]KORNIJCUK V, LIM H, SEOK J Y, et al. Leaky integrate-and-fire neuron circuit based on floating-gate integrator[J]. Frontiers in Neuroscience, 2016, 10: 212.
[23]LEE J J, PARK J, KWON M W, et al. Integrated neuron circuit for implementing neuromorphic system with synaptic device[J]. Solid-State Electronics, 2018, 140: 34-40.
[24]SAVINO G V, FORMIGLI C M. Nonlinear electronic circuit with neuron like bursting and spiking dynamics[J]. Bio Systems, 2009, 97(1): 9-14.
[25]XU Y, LIU M H, ZHU Z G, et al. Dynamics and coherence resonance in a thermosensitive neuron driven by photocurrent[J]. Chinese Physics B, 2020, 29(9): 098704.
[26]ALAM M N, MCGINTY D, SZYMUSIAK R. Neuronal discharge of preoptic/anterior hypothalamic thermosensitive neurons: relation to NREM sleep[J]. American Journal of Physiology, 1995, 269(5): R1240-R1249.
[27]VITZTHUM H, MÜLLER M, HOMBERG U. Neurons of the central complex of the locust Schistocerca gregaria are sensitive to polarized light[J]. Journal of Neuroscience, 2002, 22(3): 1114-1125.
[28]PÉREZ-GONZÖLEZ D, MALMIERCA M S. Adaptation in the auditory system: an overview[J]. Frontiers in Integrative Neuroscience, 2014, 8: 19.
[29]FU K M G, JOHNSTON T A, SHAH A S, et al. Auditory cortical neurons respond to somatosensory stimulation[J]. Journal of Neuroscience, 2003, 23(20): 7510-7515.
[30]KYPRIANIDIS I M, PAPACHRISTOU V, STOUBOULOS I N, et al. Dynamics of coupled chaotic Bonhoeffer-van der Pol oscillators[J]. WSEAS Transactions on Systems, 2012, 11(9): 516-526.
[31]MIYAKAWA K, TANAKA T, ISIKAWA H. Dynamics of a stochastic oscillator in an excitable chemical reaction system[J]. Physical Review E, 2003, 67(6): 066206.
[32]ZHONG S, QI F, XIN H W. Internal stochastic resonance in a model system for intracellular calcium oscillations[J]. Chemical Physics Letters, 2001, 342(5/6): 583-586.
[33]BULSARA A, JACOBS E W, ZHOU T, et al. Stochastic resonance in a single neuron model: theory and analog simulation[J]. Journal of Theoretical Biology, 1991, 152(4): 531-555.
[34]WANG Y, CHIK D T, WANG Z D. Coherence resonance and noise-induced synchronization in globally coupled Hodgkin-Huxley neurons[J]. Physical Review E, 2000, 61(1): 740-746.
[35]SONG X L, WANG H T, CHEN Y. Coherence resonance in an autaptic Hodgkin-Huxley neuron with time delay[J]. Nonlinear Dynamics, 2018, 94(1): 141-150.
[36]PAKDAMAN K, TANABE S, SHIMOKAWA T. Coherence resonance and discharge time reliability in neurons and neuronal models[J]. Neural Networks, 2001, 14(6/7): 895-905.
[37]KOBE D H. Helmholtz’s theorem revisited[J]. American Journal of Physics, 1986, 54(6): 552-554.
[38]SARASOLA C, TORREALDEA F J, D’ANJOU A, et al. Energy balance in feedback synchronization of chaotic systems[J]. Physical Review E, 2004, 69(1): 011606.
[39]王春妮,王亚,马军.基于亥姆霍兹定理计算动力学系统的哈密顿能量函数[J].物理学报,2016,65(24):240501.
[40]ZHOU P, HU X K, ZHU Z G, et al. What is the most suitable Lyapunov function?[J]. Chaos, Solitons & Fractals, 2021, 150: 111154.
[41]XU Y, GUO Y Y, REN G D, et al. Dynamics and stochastic resonance in a thermosensitive neuron[J]. Applied Mathematics and Computation, 2020, 385: 125427.
[42]LIU Y, XU W J, MA J, et al. A new photosensitive neuron model and its dynamics[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(9): 1387-1396.
[43]ZHOU P, YAO Z, MA J, et al. A piezoelectric sensing neuron and resonance synchronization between auditory neurons under stimulus[J]. Chaos, Solitons & Fractals, 2021, 145: 110751.
[44]ZHANG Y, ZHOU P, TANG J, et al. Mode selection in a neuron driven by Josephson junction current in presence of magnetic field[J]. Chinese Journal of Physics, 2021, 71: 72-84.
[45]CROTTY P, SCHULT D, SEGALL K. Josephson junction simulation of neurons[J]. Physical Review E, 2010, 82(1): 011914.
[46]ZHANG Y, WANG C N, TANG J, et al. Phase coupling synchronization of FHN neurons connected by a Josephson junction[J]. Science China Technological Sciences, 2020, 63(11): 2328-2338.
[47]WANG C N, TANG J, MA J. Minireview on signal exchange between nonlinear circuits and neurons via field coupling[J]. The European Physical Journal Special Topics, 2019, 228(10): 1907-1924.
[48]WU F Q, MA J, REN G D. Synchronization stability between initial-dependent oscillators with periodical and chaotic oscillation[J]. Journal of Zhejiang University-Science A, 2018, 19(12): 889-903.
[49]WANG C N, LV M, ALSAEDI A, et al. Synchronization stability and pattern selection in a memristive neuronal network[J]. Chaos, 2017, 27(11): 113108.
[50]LV M, WANG C N, REN G D, et al. Model of electrical activity in a neuron under magnetic flow effect[J]. Nonlinear Dynamics, 2016, 85(3): 1479-1490.
[51]LV M, MA J, YAO Y G, et al. Synchronization and wave propagation in neuronal network under field coupling[J]. Science China Technological Sciences, 2019, 62(3): 448-457.
[52]WU F Q, WANG C N, XU Y, et al. Model of electrical activity in cardiac tissue under electromagnetic induction[J]. Scientific Reports, 2016, 6(1): 28.
[53]MA J, WU F Q, HAYAT T, et al. Electromagnetic induction and radiation-induced abnormality of wave propagation in excitable media[J].Physica A: Statistical Mechanics and Its Applications, 2017, 486: 508-516.
[54]ZHANG X F, MA J. Wave filtering and firing modes in a light-sensitive neural circuit[J]. Journal of Zhejiang University-Science A, 2021, 22(9): 707-720.
[55]GUO Y T, ZHOU P, YAO Z, et al. Biophysical mechanism of signal encoding in an auditory neuron[J]. Nonlinear Dynamics, 2021, 105(4): 3603-3614.
[56]MA J, YANG Z Q, YANG L J, et al. A physical view of computationalneurodynamics[J]. Journal of Zhejiang University-Science A, 2019, 20(9): 639-659.
[57]YAO Z, WANG C N. Control the collective behaviors in a functional neural network[J]. Chaos, Solitons & Fractals, 2021, 152: 111361.
[58]ZHOU Q, WEI D Q. Collective dynamics of neuronal network under synapse and field coupling[J]. Nonlinear Dynamics, 2021, 105(1): 753-765.
[59]ZHANG Z Z, XU W J, ZENG S Y, et al. Optimal network structure to induce the maximal small-world effect[J]. Chinese Physics B, 2014, 23(2): 028902.
[60]ZHAO M, ZHOU C S, LÜ J, et al. Competition between intra-community and inter-community synchronization and relevance in brain cortical networks[J]. Physical Review E, 2011, 84(1): 016109.
[61]QIU S H, SUN K J, DI Z R. Collective dynamics of neural networks with sleep-related biological drives in Drosophila[J]. Frontiers in Computational Neuroscience, 2021, 15: 616193.
[62]WANG C Y, ZHANG J Q, WU Z X, et al. Collective firing patterns of neuronal networks with short-term synaptic plasticity[J]. Physical Review E, 2021, 103(2): 022312.
[63]DU M M, LI J J, YUAN Z X, et al. Astrocyte and ions metabolism during epileptogenesis: a review for modeling studies[J]. Chinese Physics B, 2020, 29(3): 038701.
[1] YUE Hong-wei, XIE Qing-lian, WEI Bao-lin, JIN Liang-nian, XIE Yue-lei, LI Qi, ZHOU Qian. Characteristics of Tl-2212 Bicrystal Josephson Junction Embedded in a Fabry-Perot Resonator [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 10-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Xilong, HAN Meng, CHEN Zhiqiang, WU Hongxin, LI Muhang. Survey of Ensemble Classification Methods for Complex Data Stream[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 1 -21 .
[2] TONG Lingchen, LI Qiang, YUE Pengpeng. Research Progress and Prospects of Karst Soil Organic Carbon Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 22 -34 .
[3] TIE Jun, LONG Juanjuan, ZHENG Lu, NIU Yue, SONG Yanlin. Tomato Leaf Disease Recognition Model Based on SK-EfficientNet[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 104 -114 .
[4] WENG Ye, SHAO Desheng, GAN Shu. Principal Component Liu Estimation Method of the Equation    Constrained Ⅲ-Conditioned Least Squares[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 115 -125 .
[5] QIN Chengfu, MO Fenmei. Structure ofC3-and C4-Critical Graphs[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 145 -153 .
[6] HE Qing, LIU Jian, WEI Lianfu. Single-Photon Detectors as the Physical Limit Detections of Weak Electromagnetic Signals[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 1 -23 .
[7] TIAN Ruiqian, SONG Shuxiang, LIU Zhenyu, CEN Mingcan, JIANG Pinqun, CAI Chaobo. Research Progress of Successive Approximation Register Analog-to-Digital Converter[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 24 -35 .
[8] ZHANG Shichao, LI Jiaye. Knowledge Matrix Representation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 36 -48 .
[9] LIANG Yuting, LUO Yuling, ZHANG Shunsheng. Review on Chaotic Image Encryption Based on Compressed Sensing[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 49 -58 .
[10] HAO Yaru, DONG Li, XU Ke, LI Xianxian. Interpretability of Pre-trained Language Models: A Survey[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 59 -71 .