Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (5): 24-35.doi: 10.16088/j.issn.1001-6600.2022022704

Previous Articles     Next Articles

Research Progress of Successive Approximation Register Analog-to-Digital Converter

TIAN Ruiqian, SONG Shuxiang*, LIU Zhenyu, CEN Mingcan, JIANG Pinqun, CAI Chaobo   

  1. School of Electronic Engineering, Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2022-02-27 Revised:2022-04-27 Online:2022-09-25 Published:2022-10-18

Abstract: Successive approximation register analog-to-digital converter (SAR ADC) has dominated the market for moderate speed and accuracy ADCs, with sampling frequency of up to 5 MHz and typical resolutions of 8 to 16 bits. While maintaining its inherent advantage of low power consumption, it faces the challenge of higher speeds and higher accuracy. The research status and advanced technology of successive approximation register analog-to-digital converter in recent years are summarized. Moreover, the sub-modules of capacitor array switching techniques, comparator and the calibration are generalized and discussed. The performance of capacitor array DACs combined with different switching strategies is compared. Comparator structures suitable for different scenarios are proposed. Calibration methods such as redundancy techniques and self-calibration techniques are discussed. Some recommendations are provided for designers to understand successive approximation register analog-to-digital converters.

Key words: successive approximation, A/D converter, switching technology, comparator, calibration

CLC Number: 

  • TN792
[1]CHUNG Y H, YEN C W, TSAI P K, et al. A 12-bit 40-MS/s SAR ADC with a fast-binary-window DAC switching scheme[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2018, 26(10): 1989-1998.
[2]刘滢浩,刘宏,徐乐,等.一种Vcm-Based10位16M采样率低功耗逐次逼近型模数转换器[J].微电子学与计算机,2017,34(11):99-103.
[3]WANG S H, HUNG C C. A 0.3 V 10 b 3 MS/s SAR ADC with comparator calibration and kickback noise reduction for biomedical applications[J]. IEEE Transactions on Biomedical Circuits and Systems, 2020, 14(3): 558-569.
[4]PILIPKO M M, MANOKHIN M E. Design of a low-power 12-bit SAR ADC[C]// 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). Piscataway,NJ: IEEE, 2019: 129-131.
[5]SHAH A, SAHOO B D. An 8 b 5-GS/s CMOS SAR ADC with speed optimized SAR logic[C]// 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS). Piscataway,NJ: IEEE, 2017: 1465-1468.
[6]HU B J, ZHANG S F, ZHOU X, et al. A sampling speed enhancement technique for near-threshold SAR ADCs[C]// 2021 IEEE International Symposium on Circuits and Systems (ISCAS). Piscataway,NJ: IEEE, 2021: 1-4.
[7]SAVITHAM, REDDY R V S. 14-bit low power successive approximation ADC using two step split capacitive array DAC with multiplexer switching[C]// 2018 Second International Conference on Advances in Electronics, Computers and Communications (ICAECC). Piscataway,NJ: IEEE, 2018: 1-4.
[8]LIU S B, SHEN Y, ZHU Z M. A 12-Bit 10 MS/s SAR ADC with high linearity and energy-efficient switching[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2016, 63(10): 1616-1627.
[9]KAO C C, HSIEH S E, HSIEH C C. A 0.5 V 12-bit SAR ADC using adaptive timedomain comparator with noise optimization[C]// 2017 IEEE Asian Solid-State Circuits Conference (A-SSCC). Piscataway,NJ: IEEE, 2017: 213-216.
[10]ZHANG H, WANG X H, ZHANG L, et al. A 10-bit 120-MS/s SAR ADC in 90 nm CMOS with redundancy compensation[C]// 2018 IEEE MTT-S International Wireless Symposium (IWS). Piscataway,NJ: IEEE, 2018: 1-3.
[11]CHENG Y S, HU H J, CHANG S J. A 2-GS/s 8 B flash-SAR time-interleaved ADC with background offset calibration[C]// 2019 IEEE International Symposium on Circuits and Systems (ISCAS). Piscataway,NJ: IEEE, 2019: 1-5.
[12]ZHANG Q H, NING N, LI J, et al. A high area-efficiency 14-bit SAR ADC with hybrid capacitor DAC for array sensors[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67(12): 4396-4408.
[13]GUO W X, WU J F. A 10 MS/s 16 bit SAR ADC achieving 100 dB SFDR and 90 dB SNDR in 0.18 um CMOS[C]// 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). Piscataway,NJ: IEEE, 2021: 974-978.
[14]GINSBURG B P, CHANDRAKASAN A P. An energy-efficient charge recycling approach for a SAR converter with capacitive DAC[C]// 2005 IEEE International Symposium on Circuits and Systems. Piscataway,NJ: IEEE, 2005: 184-187.
[15]CHANG Y K, WANG C S, WANG C K. A 8-bit 500-KS/s low power SAR ADC for bio-medical applications[C]// 2007 IEEE Asian Solid-State Circuits Conference. Piscataway,NJ: IEEE, 2007: 228-231.
[16]LIU C C, CHANG S J, HUANG G Y, et al. A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure[J]. IEEE Journal of Solid-State Circuits, 2010, 45(4): 731-740.
[17]HONG X, YANG C C, ZHANG X J. An energy-efficient SAR ADC with a partial-monotonic capacitor switching technique[C]// 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). Piscataway,NJ: IEEE, 2017: 2050-2054.
[18]TUNG W, HUANG S C. An energy-efficient 11-bit 10-MS/s SAR ADC with monotonie switching split capacitor array[C]// 2018 IEEE International Symposium on Circuits and Systems (ISCAS). Piscataway,NJ: IEEE, 2018: 1-5.
[19]GATADE S, NAGBHUSHAN M. A design of 8 bit SAR ADC using monotonie capacitive switching procedure in 90nm[C]// 2016 International Conference on Circuits, Controls, Communications and Computing (I4C). Piscataway,NJ: IEEE, 2016: 1-5.
[20]XING D Z, ZHU Y, CHAN C H, et al. Seven-bit 700-MS/s four-way time-interleaved SAR ADC with partial Vcm-based switching[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2017, 25(3): 1168-1172.
[21]梁宇华.低功耗逐次逼近型CMOS模数转换器的研究[D].西安:西安电子科技大学,2015.
[22]FU Z Y, TANG X, LI D X, et al. A 10-bit 2 MS/s SAR ADC using reverse VCM-based switching scheme[C]// 2016 IEEE International Symposium on Circuits and Systems (ISCAS). Piscataway,NJ: IEEE, 2016: 1030-1033.
[23]RAJENDRAN R, RAMAKRISHNA P V. A design of 6-bit 125-MS/s SAR ADC in 0.13-μm MM/RF CMOS process[C]// 2012 International Symposium on Electronic System Design (ISED). Piscataway,NJ: IEEE, 2012: 23-27.
[24]HUANG G Y, CHANG S J, LIU C C, et al. 10-bit 30-MS/s SAR ADC using a switchback switching method[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2013, 21(3): 584-588.
[25]SANYAL A, SUN N. A very high energy-efficiency switching technique for SAR ADCs[C]// 2013 IEEE 56th International Midwest Symposium on Circuits and Systems (MWSCAS). Piscataway,NJ: IEEE, 2013: 229-232.
[26]KHORAMI A, SHARIFKHANI M. An ultra low-power digital to analog converter for SARADCs[C]// 2017 29th International Conference on Microelectronics (ICM). Piscataway,NJ: IEEE, 2017: 1-4.
[27]SANYAL A, SUN N. An energy-efficient low frequency-dependence switching technique for SAR ADCs[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2014, 61(5): 294-298.
[28]DENG L, YANG C, ZHAO M L, et al. A 12-bit 200KS/s SAR ADC with a mixed switching scheme and integer-based split capacitor array[C]// 2013 IEEE 11th International New Circuits and Systems Conference (NEWCAS). Piscataway,NJ: IEEE, 2013: 1-4.
[29]WANG H Y, WANG S Y, YUAN Y D, et al. Low power consumption and low area capacitor array for 16-bit 1-MS/s SAR ADC[C]// 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). Piscataway,NJ: IEEE, 2018: 1003-1006.
[30]LAI W C, HUANG J F, LIN W J. 1 MS/s low power successive approximations register ADC for 67-fJ/conversion-step[C]// 2012 IEEE Asia Pacific Conference on Circuits and Systems. Piscataway,NJ: IEEE, 2012: 260-263.
[31]XIE L, HAN X F, ZHANG H C, et al. A 12 bit 16 MS/s asynchronous SAR ADC with speed-enhanced comparator and TSPC latch[C]// 2019 IEEE 4th International Conference on Integrated Circuits and Microsystems (ICICM). Piscataway,NJ: IEEE, 2019: 104-108.
[32]MENG X Y, KONG W H, YANG H F, et al. A 1.8-GS/s 6-bit two-step SAR ADC in 65-nm CMOS[C]// 2021 IEEE International Symposium on Circuits and Systems (ISCAS). Piscataway,NJ: IEEE, 2021: 1-4.
[33]BANDLA K, HARIKRISHNAN A, PAL D. Design of low power, high speed, low offset and area efficient dynamic-latch comparator for SAR-ADC[C]// 2020 International Conference on Innovative Trends in Communication and Computer Engineering (ITCE). Piscataway,NJ: IEEE, 2020: 299-302.
[34]SAISUNDAR S, CHEONG J H, JE M. A 1.8 V 1 MS/s rail-to-rail 10-bit SAR ADC in 0.18 μm CMOS[C]// 2012 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT). Piscataway,NJ: IEEE, 2012: 83-85.
[35]LJEHANI N A, ABBAS M. Rail to rail comparator for SAR ADC in biomedical applications[C]// 2021 28th International Conference on Mixed Design of Integrated Circuits and System. Piscataway,NJ: IEEE, 2021: 137-140.
[36]OZ M, BONIZZONI E, MALOBERTI F, et al. A rail-to-rail CMOS voltage comparator with programmable hysteresis[C]// 2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS). Piscataway,NJ: IEEE, 2021: 1-4.
[37]LI Y F, MAO W, ZHANG Z, et al. An ultra-low voltage comparator with improved comparison time and reduced offset voltage[C]// 2014 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS). Piscataway,NJ: IEEE, 2014: 407-410.
[38]XUE G Q, ZHOU N N, HOU D Y. Comparison of frequency-domain electromagnetic responses at different offsets based on exact calculation of grounded-wire source[J]. Radio Science, 2022, 57(1): e2021RS007304.
[39]ZHANG H S, ZHU Y, CHAN C H, et al. 27.6 a 25 MHz-BW 75 dB-SNDR inherent gain error tolerance noise-shaping SAR-assisted pipeline ADC with background offset calibration[C]// 2021 IEEE International Solid-State Circuits Conference (ISSCC). Piscataway,NJ: IEEE, 2021: 380-382.
[40]MIYAHARA M, ASADA Y, PAIK D, et al. A low-noise self-calibrating dynamic comparator for high-speed ADCs[C]// 2008 IEEE Asian Solid-State Circuits Conference. Piscataway,NJ: IEEE, 2008: 269-272.
[41]REYES B T, BIOLATO L, GALETTO A C, et al. A 4 GS/s 8-bit SAR ADC with an energy-efficient time-interleaved architecture in 130 nm CMOS[C]// 2020 Argentine Conference on Electronics (CAE). Piscataway,NJ: IEEE, 2020: 77-81.
[42]MA P S, CHEN Y Z, WU J F. A double-latch comparator for multi-GS/s SAR ADCs in 28 nm CMOS[C]// 2019 IEEE 13th International Conference on ASIC (ASICON). Piscataway,NJ: IEEE, 2019: 1-3.
[43]SUNG G M, WU P E, XU J M. 10-Bit successive approximation register analog-to-digital converter for BLDC motor drive[C]// 2020 International Symposium on Computer, Consumer and Control (IS3C). Piscataway,NJ: IEEE, 2020: 224-227.
[44]SHARUDDIN I, LEE L. Modified SR latch in dynamic comparator for ultra-low power SAR ADC[C]// 2015 IEEE International Circuits and Systems Symposium (ICSyS). Piscataway,NJ: IEEE, 2015: 151-154.
[45]KESHATTIWAR A, SAHOO B D. A systematic approach to sizing capacitors in split-SAR ADC to achieve optimum redundancy[C]// 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS). Piscataway,NJ: IEEE, 2019: 117-120.
[46]DING X, HOFMANN K, ZHANG L, et al. Redundant double conversion based digital background calibration of SAR ADC with convergence acceleration and assistance[C]// 2018 25th International Conference “Mixed Design of Integrated Circuits and System” (MIXDES). Piscataway,NJ: IEEE, 2018: 192-197.
[47]何生生.一种采用冗余位技术的12位SAR ADC的设计与研究[D].成都:电子科技大学,2019.
[48]钟利斌.高精度ADC误差提取与校正技术研究[D].成都:电子科技大学,2021.
[49]ZHANG X J, WANG M D, GUO L Y, et al. A 12-bit 200KS/s SAR ADC with digital self-calibration[C]// 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). Piscataway,NJ: IEEE, 2017: 2531-2535.
[50]LOPEZ-ANGULO A, GINES A, PERALIAS E. Digital calibration of capacitor mismatch and comparison offset in split-CDAC SAR ADCs with redundancy[C]// 2020 18th IEEE International New Circuits and Systems Conference (NEWCAS). Piscataway,NJ: IEEE, 2020: 130-133.
[51]AKKAYA A, CELIK F, LEBLEBICI Y. An 8-bit 800 MS/s loop-unrolled SAR ADC with common-mode adaptive background offset calibration in 28 nm FDSOI[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68(7): 2766-2774.
[52]GINES A, LEGER G, PERALIAS E. Digital non-linearity calibration for ADCs with redundancy using a new LUT approach[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68(8): 3197-3210.
[53]BAGHERI M, SCHEMBARI F, ZARE-HOSEINI H, et al. Interchannel mismatch calibration techniques for time-interleaved SAR ADCs[J]. IEEE Open Journal of Circuits and Systems, 2021, 2: 420-433.
[54]PENG X Z, ZHONG Z Q, WU N, et al. A 14 bits 1GSPS pipelined-SAR ADC with digital background calibration[C]// 2020 IEEE 15th International Conference on Solid-State & Integrated Circuit Technology (ICSICT). Piscataway,NJ: IEEE, 2020: 1-1.
[55]CHUNG Y H, HU C Y, CHANG C W. A 38-mW 7-bit 5-GS/s time-interleaved SAR ADC with background skew calibration[C]// 2018 IEEE Asian Solid-State Circuits Conference (A-SSCC). Piscataway,NJ: IEEE, 2018: 243-246.
[56]GARVIK H, WULFF C, YTTERDAL T. A 68 dB SNDR compiled noise-shaping SAR ADC with on-chip CDAC calibration[C]// 2019 IEEE Asian Solid-State Circuits Conference (A-SSCC). Piscataway,NJ: IEEE, 2019: 193-194.
[57]ZHANG Q H, NING N, LI J, et al. A second-order noise-shaping SAR ADC using two passive integrators separated by the comparator[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2021, 29(1): 227-231.
[58]FAN H, WU X J, FENG QY, et al. Capacitive recombination calibration method to improve the performance of SAR ADC[C]// 2020 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS). Piscataway,NJ: IEEE, 2020: 43-46.
[59]YOUN E, JANG Y C. 12-bit 20M-S/s SAR ADC using C-R DAC and capacitor calibration[C]// 2018 International SoC Design Conference (ISOCC). Piscataway,NJ: IEEE, 2018: 1-2.
[60]OH D R, MOON K J, LIM W M, et al. An 8-bit 1-GS/s asynchronous loop-unrolled SAR-flash ADC with complementary dynamic amplifiers in 28-nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2021, 56(4): 1216-1226.
[61]WU J J, WU J H. Background calibration of capacitor mismatch and gain error in pipelined-SAR ADC using partially split structure[C]// 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). Piscataway,NJ: IEEE, 2021: 1882-1885.
[62]FAN H, WANG Y N, WU X J. A realizable digital bubble sorting SAR ADC calibration technology[C]// 2021 International Conference on IC Design and Technology (ICICDT). Piscataway,NJ: IEEE, 2021: 1-4.
[63]刘振宇,宋树祥,岑明灿,等.低功耗高精度Sigma-Delta调制器的建模与设计[J].广西师范大学学报(自然科学版),2022,40(2):58-70.
[1] XIA Haiying,LIU Weitao,ZHU Yongjian. An Improved Fast SUSAN Chessboard Corner Detection Algorithm [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 44-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Xilong, HAN Meng, CHEN Zhiqiang, WU Hongxin, LI Muhang. Survey of Ensemble Classification Methods for Complex Data Stream[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 1 -21 .
[2] TONG Lingchen, LI Qiang, YUE Pengpeng. Research Progress and Prospects of Karst Soil Organic Carbon Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 22 -34 .
[3] TIE Jun, LONG Juanjuan, ZHENG Lu, NIU Yue, SONG Yanlin. Tomato Leaf Disease Recognition Model Based on SK-EfficientNet[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 104 -114 .
[4] WENG Ye, SHAO Desheng, GAN Shu. Principal Component Liu Estimation Method of the Equation    Constrained Ⅲ-Conditioned Least Squares[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 115 -125 .
[5] QIN Chengfu, MO Fenmei. Structure ofC3-and C4-Critical Graphs[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 145 -153 .
[6] HE Qing, LIU Jian, WEI Lianfu. Single-Photon Detectors as the Physical Limit Detections of Weak Electromagnetic Signals[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 1 -23 .
[7] ZHANG Shichao, LI Jiaye. Knowledge Matrix Representation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 36 -48 .
[8] LIANG Yuting, LUO Yuling, ZHANG Shunsheng. Review on Chaotic Image Encryption Based on Compressed Sensing[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 49 -58 .
[9] HAO Yaru, DONG Li, XU Ke, LI Xianxian. Interpretability of Pre-trained Language Models: A Survey[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 59 -71 .
[10] YU Mengzhu, TANG Zhenjun. Survey of Video Hash Research Based on Hand-craft Features[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 72 -89 .