Journal of Guangxi Normal University(Natural Science Edition) ›› 2021, Vol. 39 ›› Issue (2): 125-131.doi: 10.16088/j.issn.1001-6600.2019050801
Previous Articles Next Articles
YAN Sha
CLC Number:
[1] 陈兰荪.数学生态学模型与研究方法[M].成都:四川科学技术出版社,2003. [2] 叶其孝,李正元.反应扩散方程引论[M]. 北京:科学出版社,1999. [3] 肖燕妮, 周义仓, 唐三一. 生物数学原理[M]. 西安: 西安交通大学出版社,2012. [4] ARMSTRONG R A,MCGHEE R.Competitive exclution[J]. The American Naturalist,1980, 115(2): 151-170.DOI:10.1086/283553. [5] ABRAMSP A, BRASSIL C E, Holt R D.Dynamics and responses to mortality rates of competing predators undergoing predator-prey cycles[J].Theoretical Population Biology, 2003, 64(2):163-176. [6] 闫莎.含一个食饵和两个竞争捕食者模型解的整体性态[J].陕西理工学院学报(自然科学版),2012,28(2):59-62.DOI: 10.3969/j.issn.1673-2944.2012.02.013. [7] 伏升茂, 闫莎.含一个食饵和两个竞争捕食者种群模型解的整体性态[J].西北师范大学学报(自然科学版), 2010,46(3):1-5.DOI: 10.3969/j.issn.1001-988X.2010.03.001. [8] 闫莎.一类三种群捕食者-食饵交错扩散模型整体解的存在性[J].纯粹数学与应用数学,2011,27(2):226-235.DOI: 10.3969/j.issn.1008-5513.2011.02.015. [9] 郭凌, 伏升茂.具有Holling III 类功能反应的捕食者-食饵扩散模型的稳定性[J].兰州大学学报(自然科学版), 2008, 44(2):107-110.DOI: 10.13885/j.issn.0455-2059.2008.02.012. [10] 伏升茂, 屈菲.非线性密度制约的Holling-Ⅲ型捕食者-食饵扩散模型的稳定性[J].西北师范大学学报(自然科学版),2013,49(3):1-4,9. DOI: 10.16783/j.cnki.nwnuz.2013.03.001. [11] 胡晓丽, 伏升茂.带 Lotka-Volterra 互惠源的多种群趋化模型的稳定性[J].系统科学与数学, 2017, 37(6): 1541-1554. [12] 冯金明,李遵先.一类具扩散的传染病模型的稳定性分析[J].广西师范大学学报(自然科学版),2018,36(2):63-68.DOI: 10.16088/j.issn.1001-6600.2018.02.009. [13] 薛晋栋,冯春华.一类时滞脉冲 Lotka-Volterra系统的概周期解[J].广西师范大学学报(自然科学版),2014,32(1):69-73.DOI: 10.16088/j.issn.1001-6600.2014.01.006. [14] 罗颜涛, 张龙,滕志东.一类间歇时滞扩散的概周期捕食系统的持久性[J].广西师范大学学报(自然科学版),2017,35(2):50-57. DOI: 10.16088/j.issn.1001-6600.2017.02.008. [15] FU S M, WEN Z J, CUI S B.Uniform boundedness and stability of global solutions in a strongly coupled three-species cooperating model[J].Nonlinear Analysis-Real Word Applications, 2008, 9(2): 272-289. DOI: 10.1016/j.nonrwa.2006.10.003. [16] 许生虎, 许万银.具有性别结构的交错扩散捕食者-食饵模型整体解的存在性和稳定性[J].应用数学, 2010, 23(3):482-490. [17] YANG F, FU S M.Global solution for a tritrophic food chain model with diffusion[J].Rocky Mountain Journal of Mathematics, 2008, 38(5):1785-1812. [18] 伏升茂, 高海燕,崔尚斌.竞争-竞争-互惠交错扩散模型的整体解[J]. 数学学报,2008,51(1):153-164.DOI: 10.3321/j.issn:0583-1431.2008.01.019. [19] AMANN H.Dynamic theory of quasilinear parabolic systems:Ⅲ global existence[J]. Mathematische Zeitschrift,1989,202:219-250. [20] CHOI Y S,LUI R,YAMADA Y.Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with strongly coupled cross-diffusion[J]. Discrete and Continuous Dynamical Systems, 2004,10(3):719-730.DOI: 10.3934/dcds.2004.10.719. [21] TUOV P V.On global existence of solutions to a cross-diffusion system[J]. Journal of Mathematical Analysis and Applications, 2008, 343(2): 826-834.DOI: 10.1016/j.jmaa.2008.01.089. [22] LADYZENSKAJA O A,SOLONNIKOV V A,Uralceva N N.Linear andquasilinear equations of parabolic type[M].Washington DC:American Mathematical Society,1968. |
[1] | ZUO Jiabin, YUN Yongzhen. Anti-periodic Boundary Value Problem for a Class of Fractional Differential Equations [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 56-64. |
[2] | ZHU Yaping, QU Guorong, FAN Jianghua. The Existence of Solutions for Quasi-variational Inequalities by Using the Fixed Point Index Approach [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 79-85. |
[3] | ZHANG Lisheng, ZHANG Zhiyong, MA Kaihua, LI Guofang. Studying Oscillations in Convection Cahn-Hilliard System with Improved Lattice Boltzmann Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 15-26. |
[4] | TANG Guoji. Solvability for Generalized Mixed Variational Inequalities with Perturbation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 76-83. |
[5] | LEI Qingzhu,QIN Yongsong,LUO Min. Empirical Bayes Estimation and Test for Scale ExponentialFamilies under Strong Mixing Samples [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 63-74. |
[6] | LUO Yantao, ZHANG Long, TENG Zhidong. Permanence of an Almost Periodic Predator-prey System withIntermit-tent Dispersal and Dispersal Delays between Patches [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(2): 50-57. |
[7] | HUANG Kaijiao, XIAO Feiyan. A Stochastic Predator-prey System with Lévy Jumps [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(2): 66-72. |
[8] | HAN Cai-hong, LI Lüe, PANG Lin-na, HOU Xin-xin. Global Attractivity of the Max-Type Difference Equation xn=max${\frac{1}{x_{n-k}^{\alpha}},\frac{A_n}{x^{\beta}_{n-k-2}}}$ [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(3): 71-74. |
[9] | ZHANG Mei-yue. Some New Results for the Electron Beams Focusing System Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 38-44. |
[10] | HAN Cai-hong, LI Lue, HUANG Rong-li. Dynamics of the Difference Equation xn+1=pn+xnxn-1 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(1): 44-47. |
[11] | ZHAO Wei-qi, LIANG Jia-rong, LI Xia. Finite-time Terminal Sliding Mode Control for Singular Systems [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(4): 73-78. |
|