Journal of Guangxi Normal University(Natural Science Edition) ›› 2015, Vol. 33 ›› Issue (4): 81-86.doi: 10.16088/j.issn.1001-6600.2015.04.014
Previous Articles Next Articles
YANG Kun, LIN Jiao, JIANG Gui-rong
CLC Number:
[1] ARTALEJO J R, ECONOMOU A, LOEZ-HERRERO M J. On the number of recovered individuals in the SIS and SIR stochastic epidemic models [J]. Mathematical Biosciences, 2010, 228(1): 45-55. [2] GRAY A, GREENHALGH D, MAO Xue-rong, et al. The SIS epidemic model with Markovian switching [J]. Journal of Mathematical Analysis and Applications, 2012, 394(2): 496-516. [3] WANG Feng-yuan, WANG Xiao-yi, ZHANG Shu-wen, et al. On pulse vaccine strategy in a periodic stochastic SIR epidemic model [J]. Chaos, Solitons & Fractals, 2014, 66: 127-135. [4] 王克.随机生物数学模型[M].北京:科学出版社,2010. [5] LIN Yu-guo, JIANG Da-qing, WANG Shuai. Stationary distribution of a stochastic SIS epidemic model with vaccination [J]. Physica A: Statistical Mechanics and its Applications, 2014, 394: 187-197. [6] 徐丽筱,张天四,黄晓鑫.一类具有饱和发生率的随机SIRS模型全局正解的渐近行为[J].上海理工大学学报,2013, 35(6): 541-546. [7] 薛晋栋,冯春华.一类时滞脉冲Lotka-Volterra系统的概周期解[J].广西师范大学学报:自然科学版,2014, 32(1): 69-73. [8] 郝丽杰,蒋贵荣,鹿鹏.具垂直传染的SIRS传染病模型的脉冲控制和分岔分析[J].广西师范大学学报:自然科学版, 2012, 30(4): 42-47. [9] 刘开源,陈兰荪.一类具有垂直传染与脉冲免疫的SEIR传染病模型的全局分析[J].系统科学与数学,2010, 30(3): 323-333. [10] 刘建平,肖占兵.一类具功能反应和脉冲扰动系统的定性分析[J].广西师范大学学报:自然科学版, 2009, 27(3): 30-34. [11] 张树文,陈兰荪.具有密度依赖的生育脉冲单种群阶段结构模型[J].系统科学与数学,2006, 26(6): 752-760. [12] 马淑芳,仇晓芬,钟秋慧.具有脉冲出生的SIS传染病模型的生存性[J].黑龙江大学自然科学学报,2010, 27(1): 34-37. |
[1] | ZHENG Tao, ZHOU Xinran, ZHANG Long. Global Asymptotic Stability of Predator-Competition-Cooperative Hybrid Population Models of Three Species [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 64-70. |
[2] | HE Dongping,HUANG Wentao ,WANG Qinlong. Limit Cycle Flutter and Chaostic Motion of Two-Dimensional Airfoil System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 87-95. |
[3] | ZHANG Yijin. Random Dynamics for Stochastic Delay Lattice Systems in Xρ Space [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 106-110. |
[4] | MIAO Xinyan, ZHANG Long, LUO Yantao, PAN Lijun. Study on a Class of Alternative Competition-Cooperation Hybrid Population Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 25-31. |
[5] | HUANG Kaijiao, XIAO Feiyan. A Stochastic Predator-prey System with Beddington-DeAngelis Functional Response [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 32-40. |
[6] | HUANG Yanping, WEI Yuming. Multiple Solutions of Multiple-points Boundary Value Problem for a Class of Fractional Differential Equation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 41-49. |
[7] | HUANG Rongli, LI Changyou, WANG Minqing. Bernstein's Theorem for a Class of Ordinary Differential Equations Ⅱ [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 50-55. |
[8] | FENG Jinming,LI Zunxian. Stability Analysis of a Class of Epidemic Model with Diffusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(2): 63-68. |
[9] | LUO Yantao, ZHANG Long, TENG Zhidong. Permanence of an Almost Periodic Predator-prey System withIntermit-tent Dispersal and Dispersal Delays between Patches [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(2): 50-57. |
[10] | HUANG Kaijiao, XIAO Feiyan. A Stochastic Predator-prey System with Lévy Jumps [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(2): 66-72. |
[11] | YAN Rongjun, WEI Yuming, FENG Chunhua. Existence of Three Positive Solutions for Fractional Differential Equation ofBoundary Value Problem with p-Laplacian Operator and Delay [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 75-82. |
[12] | HAN Caihong, LI Lüe, HUANG Lili. Global Asymptotic Stability of a Class of Difference Equations [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(1): 53-57. |
[13] | HAN Cai-hong, LI Lüe, PANG Lin-na, HOU Xin-xin. Global Attractivity of the Max-Type Difference Equation xn=max${\frac{1}{x_{n-k}^{\alpha}},\frac{A_n}{x^{\beta}_{n-k-2}}}$ [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(3): 71-74. |
[14] | WEI Bao-jun, ZHANG Wu-jun, SHI Jin-e. A Weighted Norm Estimates Based on Finite Volume Method for Two-point Boundary Value Problem [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(3): 75-78. |
[15] | ZHANG Mei-yue. Some New Results for the Electron Beams Focusing System Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 38-44. |
|